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The ACM Recommender Systems Challenge 2018 focused on the task of automatic music playlist continu-
ation, which is a form of the more general task of sequential recommendation. Given a playlist of arbitrary
length with some additional meta-data, the task was to recommend up to 500 tracks that fit the target char-
acteristics of the original playlist. For the RecSys Challenge, Spotify released a dataset of one million user-
generated playlists. Participants could compete in two tracks, i.e., main and creative tracks. Participants in
the main track were only allowed to use the provided training set, however, in the creative track, the use of
external public sources was permitted. In total, 113 teams submitted 1,228 runs to the main track; 33 teams
submitted 239 runs to the creative track. The highest performing team in the main track achieved an R-
precision of 0.2241, an NDCG of 0.3946, and an average number of recommended songs clicks of 1.784. In
the creative track, an R-precision of 0.2233, an NDCG of 0.3939, and a click rate of 1.785 was obtained by the
best team. This article provides an overview of the challenge, including motivation, task definition, dataset
description, and evaluation. We further report and analyze the results obtained by the top-performing teams
in each track and explore the approaches taken by the winners. We finally summarize our key findings, dis-
cuss generalizability of approaches and results to domains other than music, and list the open avenues and
possible future directions in the area of automatic playlist continuation.

CCS Concepts: • Information systems → Multimedia information systems; Data mining; Informa-

tion retrieval; Test collections;

Additional Key Words and Phrases: Recommender systems, automatic playlist continuation, music recom-
mendation systems, challenge, benchmark, evaluation

ACM Reference format:

Hamed Zamani,Markus Schedl, Paul Lamere, and Ching-Wei Chen. 2019. AnAnalysis of Approaches Taken in
the ACM RecSys Challenge 2018 for Automatic Music Playlist Continuation. ACM Trans. Intell. Syst. Technol.

10, 5, Article 57 (September 2019), 21 pages.
https://doi.org/10.1145/3344257

This work was supported in part by the Center for Intelligent Information Retrieval. Any opinions, findings, conclusions,
or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the sponsor.
Authors’ addresses: H. Zamani, University of Massachusetts Amherst, Amherst, USA; email: zamani@cs.umass.edu;
M. Schedl, Johannes Kepler University Linz, Linz, Austria; email: markus.schedl@jku.at; P. Lamere and C.-W. Chen, Spotify,
New York; emails: {paul, cw}@spotify.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2157-6904/2019/09-ART57 $15.00
https://doi.org/10.1145/3344257

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 5, Article 57. Publication date: September 2019.

https://doi.org/10.1145/3344257
mailto:permissions@acm.org
https://doi.org/10.1145/3344257


57:2 H. Zamani et al.

1 OVERVIEW

According to a study carried out in 2016 by the Music Business Association1 as part of their Mu-
sic Biz Consumer Insights program,2 playlists accounted for 31% of music listening time among
listeners in the United States, which is more than albums (22%), but less than single tracks (46%).
In a 2017 study conducted by Nielsen,3 it was found that 58% of users in the United States create
their own playlists, 32% share them with others. Other studies, conducted by MIDiA,4 show that
55% of music streaming service subscribers create music playlists, using streaming services. Stud-
ies like these suggest a growing importance of playlists as a mode of music consumption, which
is also reflected in the fact that the music streaming service Spotify currently hosts over 2 billion
playlists.5

In its most generic definition, a playlist is simply a sequence of tracks intended to be listened to
together. The task of automatic playlist generation then refers to the automated creation of these
sequences of tracks [4]. In this context, the ordering of songs6 in a playlist is often highlighted
as a key characteristic of automatic playlist generation, which makes the task a highly complex
endeavor. Some authors have therefore proposed approaches based on Markov chains to model
the transitions between songs in playlists, e.g., References [9, 36]. While these approaches have
been shown to outperform approaches agnostic of the song order in terms of log likelihood, recent
research has found little evidence that the exact order of songs actually matters to users [47], while
the ensemble of songs in a playlist [49] and direct song-to-song transitions [24] seems to matter.

Considered a variation of automatic playlist generation, the task of automatic playlist continu-

ation (APC) consists of adding one or more tracks to a playlist in a way that fits the same target
characteristics of the original playlist [4, 46]. This has benefits in both the listening and creation
of playlists: Users can enjoy listening to continuous sessions beyond the end of a finite-length
playlist, while also finding it easier to create longer, more compelling playlists without a need to
have extensive musical familiarity.
Schedl et al. [46] have recently identified the task of automatic music playlist continuation as

one of the grand challenges in music recommender systems research. A large part of the APC
task is to accurately infer the intended purpose of a given playlist. This is challenging not only
because of the broad range of these intended purposes (when they even exist) but also because
of the diversity in the underlying features or characteristics that might be needed to infer those
purposes.
An extreme cold start scenario for this task is where a playlist is created with some meta-data

(e.g., the title of a playlist), but no song has been added to the playlist. This problem can be cast as
an ad-hoc information retrieval task, where the task is to rank songs in response to a user-provided
meta-data query.
Given the importance of playlists in improving the user experience within the context of music

streaming services, ACM Recommender Systems Challenge7 2018 [7] has focused on an automatic
music playlist continuation task.8 This article provides an overview of the challenge, the results

1https://musicbiz.org/news/playlists-overtake-albums-listenership-says-loop-study.
2https://musicbiz.org/resources/tools/music-biz-consumer-insights/consumer-insights-portal.
3http://nielsen.com/us/en/insights/reports/2017/music-360-2017-highlights.html.
4https://midiaresearch.com/blog/announcing-midias-state-of-the-streaming-nation-2-report.
5https://press.spotify.com/us/about.
6In this article, the terms “song” and “track” are used, interchangeably.
7ACM Recommender Systems Challenge, or RecSys Challenge, is an annual competition organized in conjunction with
the ACM Conference on Recommender Systems, since 2010. For more information, refer to Reference [43] or visit
http://recsyschallenge.com/.
8http://2018.recsyschallenge.com.
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Table 1. Basic Statistics of the Million Playlist Dataset

Property Value
Number of playlists 1,000,000
Number of tracks 66,346,428
Number of unique tracks 2,262,292
Number of unique albums 734,684
Number of unique artists 295,860
Number of unique playlist titles 92,944
Number of unique normalized playlist titles 17,381
Average playlist length (tracks) 66.35

achieved by over 100 participating teams, as well as the winning and most innovative approaches
and future directions and open avenues in this research area.

1.1 Task: Automatic Playlist Continuation

As mentioned earlier, automatic playlist continuation is a useful feature for music streaming ser-
vices, not only because it can extend listening session length but also because it can increase en-
gagement of users on their platform by making it easier for users to create playlists that they can
enjoy and share. ACMRecommender Systems Challenge 2018 has focused on the task of automatic
playlist continuation (APC). This task consists of adding one or more tracks to a music playlist in
a way that fits the target characteristics of the original playlist [4, 46]. To formally define the task,
letM be the universe of tracks in the underlying music catalog. Given a playlist P created by a
useru, that contains k music tracksMP = {mP1,mP2, . . . ,mPk }, the task is to rank the music tracks
fromM −MP to be recommended to the user for completing the playlist. In addition, each playlist
includes some meta-data information, such as title. It should be noted that k can be equal to zero
for some playlists, meaning that the user has created the playlist but no music track has yet been
added to the playlist.

1.2 Competition: Main and Creative Tracks

ACM Recommender Systems Challenge 2018 invited participants to submit their solutions for the
APC task in two distinct tracks: main track and creative track. Participants in the main track were
only allowed to use the dataset provided by the challenge for training their models. In contrast,
participants in the creative track were required to use external resources, such as public datasets,
for solving the same task. The submitted solutions for both tracks were evaluated using the same
dataset, which will be explained in the following subsection.

1.3 Data: Million Playlist Dataset

For algorithm development and testing, we released a dataset of one million user-created playlists
from the Spotify platform, dubbed theMillion Playlist Dataset (MPD). These playlists were created
during the period of January 2010 until November 2017. Statistics of the MPD are reported in
Table 1. The dataset includes, for each playlist, its title as well as the list of tracks (including
album and artist names), and some additional meta-data such as Spotify URIs and the playlist’s
number of followers. The playlist titles in the dataset were unmodified; however, for reporting in
Table 1, playlist titles were lightly normalized by converting to lowercase and removing spaces
and common non-alphanumeric symbols. A truncated sample playlist is shown in Appendix B.

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 5, Article 57. Publication date: September 2019.



57:4 H. Zamani et al.

A separate challenge dataset was used to validate the quality of the elaborated algorithms. It
consisted of a set of playlists from which a number of tracks had been withheld. The challenge set
was composed of 10,000 incomplete playlists and covered a total of 10 scenarios (1,000 playlists
for each): (1) title only, no track, (2) title and the first 5 tracks, (3) the first 5 tracks, (4) title and the
first 10 tracks, (5) the first 10 tracks, (6) title and the first 25 tracks, (7) title and 25 random tracks,
(8) title and the first 100 tracks, (9) title and 100 random tracks, and (10) title and the first track.
The task was then to predict the missing tracks in those playlists, and participating teams were

required to submit their predictions for those missing tracks (as a list of 500 ordered predictions).
The withheld tracks were used by the organizers as ground truth, i.e., to compute the performance
measures for each submission.
Note that the data provided by the challenge does not contain acoustic information or features.

However, participants in the creative track were able to use the Spotify API (or other sources) to
retrieve such information.
To foster reproducibility and further research in music recommendation, the dataset will be

made available for researchers on the Spotify Research website.9

1.4 Evaluation

To assess the quality of submissions, we computed three metrics and averaged them across all
playlists in the challenge dataset: R-precision, normalized discounted cumulative gain (NDCG),
and recommended songs clicks. The formal definition of these metrics is presented in Appendix A.
The higher the R-precision and NDCG, the better. However, lower recommended songs clicks

indicates better performance. To aggregate the individual scores for the three metrics, Borda rank
aggregation [12] is used, i.e., scores are converted to ranks, which are then summed up over the
three measures to obtain a single performance score.

2 PARTICIPATION

The RecSys Challenge waswell received: 1,791 people registered; 1,430 with an academic affiliation
and 361 from industry. These people formed a total of 410 teams. Out of these, 117 teams were
active, i.e., submitted at least one run (113 and 33, respectively, to the main and to the creative
track). The number of active teams per country for the top 20 countries (in terms of the number
of teams) is plotted in Figure 1. As depicted, the United States has the highest number of active
teams followed by Austria and Italy.
In total, we received 1,467 submissions, out of which 1,228 were submitted to the main track

and 239 to the creative track. The number of submissions made by each active team is plotted in
Figure 2.

3 RESULTS

The final results achieved by the participating teams for both main and creative tracks are avail-
able online.10,11 Tables 2 and 3 summarize the results achieved by the top 10 teams in the main
and creative tracks, respectively. Note that the test set for both tracks are the same and the only
difference is that the teams were allowed to use external resources (other than the MPD training
set) in the creative track.
As shown in Tables 2 and 3, the team vl6 has achieved the first ranked in both tracks, followed

by teams hello word! and Avito in themain track and Creamy Fireflies and KAENEN in the creative

9https://research.spotify.com/datasets.
10The final leaderboard for the main track: http://www.recsyschallenge.com/2018/leaderboard-main.html.
11The final leaderboard for the creative track: http://www.recsyschallenge.com/2018/leaderboard-creative.html.
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Fig. 1. Number of registered teams per country for the top 20 countries.

Fig. 2. Number of submissions per team in descending order.

track. The first ranked team has achieved the best results in terms of all evaluation metrics, except
for the recommended songs clicks metric in the main track where it has been beaten by teamAvito.
Figures 3 and 4 demonstrate the highest performance achieved in the leaderboard over time

for the main and the creative tracks, respectively.12 As expected, there is an increasing trend in
terms of R-precision and NDCG and a decreasing trend in terms of recommended songs clicks over
time. We also plot the performance of the first ranked team (team vl6) per submission over time
in Figure 5.
To gain a deep understanding of the performance of the models, we report the results for the

10 different types of playlists, separately (see Tables 4 and 5 for the main and creative tracks,
respectively). As mentioned earlier in Section 1.3, the challenge set includes 10,000 playlists; 1,000

12The starting date for the plots corresponding to recommended songs clicks differs from the starting dates in the other
plots. This is due to the error of our evaluation script, which has been solved on 2018-06-01.
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Table 2. Final Results Achieved by the Top 10 Teams in the Main Track

Rank Team R-prec NDCG Clicks Code

1 vl6 [51] 0.2241 0.3946 1.7839 https://github.com/layer6ai-labs/vl6_recsys2018

2 hello world! [53] 0.2234 0.3932 1.8952 https://github.com/hojinYang/spotify_recSys_challenge_2018

3 Avito [42] 0.2153 0.3846 1.7818 https://github.com/VasiliyRubtsov/recsys2018

4 Creamy Fireflies [1] 0.2202 0.3857 1.9335 https://github.com/tmscarla/spotify-recsys-challenge

4 MIPT_MSU 0.2167 0.3823 1.8754 https://github.com/zakharovas/RecSys2018

6 HAIR [55] 0.2163 0.3803 2.1815 https://github.com/LauraBowenHe/Recsys-Spotify-2018-challenge

7 KAENEN [34] 0.2091 0.3747 2.0540 https://github.com/rn5l/rsc18

7 BachPropagate [23] 0.2090 0.3740 1.8834 https://bachpropagate.weebly.com/

9 Definitive Turtles [26] 0.2086 0.3751 2.0781 https://github.com/proto-n/recsys-challenge-2018

10 IN3PD [14] 0.2078 0.3713 1.9517 https://github.com/guglielmof/recsys_spt2018MI

The highest R-prec and NDCG as well as the lowest clicks are marked as bold.

Table 3. Final Results Achieved by the Top 10 Teams in the Creative Track

Rank Team R-prec NDCG Clicks Code

1 vl6 [51] 0.2234 0.3939 1.7845 https://github.com/layer6ai-labs/vl6_recsys2018

2 Creamy Fireflies [1] 0.2197 0.3846 1.9252 https://github.com/tmscarla/spotify-recsys-challenge

3 KAENEN [34] 0.2090 0.3746 2.0482 https://github.com/rn5l/rsc18

4 cocoplaya [15] 0.2022 0.3656 1.8377 https://github.com/andrebola/creative-recsys-cocoplaya

5 BachPropagate [23] 0.2024 0.3659 2.0029 https://bachpropagate.weebly.com/

6 Trailmix [54] 0.2059 0.3703 2.2589 https://github.com/xing-zhao/RecSys-Challenge-2018-Trailmix.git

7 teamrozik [25] 0.2054 0.3609 2.1636 https://github.com/mesutkaya/SpotifyRecSysChallenge2018

8 Freshwater Sea 0.1952 0.3504 2.1302 https://github.com/fyrelab/Spotify-RecSys

9 Team Radboud [50] 0.1982 0.3564 2.2934 https://github.com/TimovNiedek/recsys-random-walk

10 spotif.ai [27] 0.1924 0.3394 2.2665 https://github.com/eldrin/recsys18-spotify-spotif-ai

10 Avito [42] 0.1764 0.3337 1.8988 https://github.com/VasiliyRubtsov/recsys2018

The highest R-prec and NDCG as well as the lowest clicks are marked as bold.

Fig. 3. The best performance in the leaderboard of the main track over time.

playlists from each of the following playlist types: (1) title only, no track, (2) title and the first
5 tracks, (3) the first 5 tracks, (4) title and the first 10 tracks, (5) the first 10 tracks, (6) title and
the first 25 tracks, (7) title and 25 random tracks, (8) title and the first 100 tracks, (9) title and 100
random tracks, and (10) title and the first track.
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Fig. 4. The best performance in the leaderboard of the creative track over time.

Fig. 5. The performance of the first ranked team (team vl6) in the main track over time.

By analyzing the results reported in Tables 4 and 5, we arrive at the following conclusions:

• As expected, by increasing the number of tracks as the input, the performance generally in-
creases. There exist some exceptions, specially when 100 tracks are given. The reason can be
due to the way that the teams handle the relation between the playlists. It is well known that
most learning models fail at modeling long sequences, which also happens in the APC task.

• Surprisingly, the models perform worse when the title is also given as a meta-data for the
playlist. For instance, the only difference between Types 2 and 3 is that the former contains
playlist title. We believe that this strange behavior is observed because titles are highly
sparse and models overfit on the titles appearing in the training set. In summary, the models
fail at modeling the titles effectively.

• Interestingly, APC given random tracks produces much better results compared to the first
tracks in the playlist (see the results for Type 6 vs. Type 7 and Type 8 vs. Type 9). This is
due to the fact that adjacent tracks in a playlist are likely to share similar information, such
at genre, artist, album, and so on. Therefore, random tracks would provide more useful
information to better understand the focus of the playlist, and thus more accurate APC
performance is achieved.

• When the number of given tracks are more than or equal to 5, the recommended songs
clicks for all the models is less than 1. This means that most users can find a relevant track
in the top 10 recommended list and do not need to reload the recommended track list.

• By increasing the number of given tracks, the standard deviation of the performances ob-
tained by the top 10 teams generally increases. In other words, most approaches perform
closelywhen a few tracks are given. However, when several tracks are given for each playlist
(e.g., more than or equal to 25 tracks), a substantial difference between the performance of
different approaches is observed.

• Even one track matters: comparing the results of the playlists from Types 1 and 10, we
observe a significant increase in the performance by adding only the first track of the

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 5, Article 57. Publication date: September 2019.
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Table 4. The Performance of Top 10 Teams in the Main Track for Different Types of Playlists

in the Challenge Set

Type 1 Type 2 Type 3 Type 4 Type 5

Team title only title + first 5 tracks only first 5 tracks title + first 10 tracks only first 10 tracks

R-prec NDCG clicks R-prec NDCG clicks R-prec NDCG clicks R-prec NDCG clicks R-prec NDCG clicks

vl6 0.0978 0.2044 10.759 0.2032 0.3766 0.900 0.2089 0.3847 0.644 0.2098 0.3973 0.437 0.1955 0.3737 0.631

hello world! 0.0870 0.1925 11.400 0.2035 0.3791 0.908 0.2153 0.3939 0.646 0.2090 0.3928 0.465 0.1994 0.3788 0.571

Avito 0.0845 0.1881 10.423 0.2008 0.375 0.875 0.2103 0.3878 0.623 0.2104 0.3956 0.424 0.1970 0.3752 0.568

Creamy Fireflies 0.0949 0.1959 10.959 0.1979 0.3682 1.026 0.2123 0.3868 0.766 0.2034 0.3841 0.708 0.1968 0.3695 0.773

MIPT_MSU 0.0948 0.1994 10.797 0.1946 0.3648 1.013 0.2061 0.3821 0.695 0.1940 0.3793 0.635 0.1895 0.3624 0.700

HAIR 0.0829 0.1812 12.932 0.1956 0.3660 1.000 0.2037 0.3740 0.756 0.2002 0.3810 0.534 0.1929 0.3655 0.640

KAENEN 0.0953 0.2053 10.563 0.1945 0.3611 1.168 0.2049 0.3776 1.039 0.1969 0.3754 0.759 0.1897 0.3615 0.961

BachPropagate 0.0751 0.1814 10.426 0.1991 0.3694 1.038 0.2070 0.3813 0.783 0.2034 0.3842 0.597 0.1940 0.3661 0.749

Definitive Turtles 0.0960 0.2001 10.884 0.1935 0.3651 1.212 0.2049 0.3797 0.893 0.1951 0.3755 0.769 0.1887 0.3623 0.946

IN3PD 0.0963 0.2031 10.452 0.1935 0.3608 1.108 0.2076 0.3813 0.753 0.1981 0.3772 0.573 0.1899 0.3615 0.746

Type 6 Type 7 Type 8 Type 9 Type 10

Team title + first 25 tracks title + 25 random tracks title + first 100 tracks title + 100 random tracks title + first track

R-prec NDCG clicks R-prec NDCG clicks R-prec NDCG clicks R-prec NDCG clicks R-prec NDCG clicks

vl6 0.2488 0.4005 0.262 0.3718 0.5616 0.024 0.1888 0.3539 0.634 0.3656 0.5846 0.019 0.1510 0.3087 3.529

hello world! 0.2584 0.4138 0.144 0.3559 0.5417 0.021 0.2225 0.3956 0.319 0.3414 0.5538 0.033 0.1408 0.2901 4.445

Avito 0.2544 0.4082 0.162 0.3440 0.5340 0.022 0.2036 0.3728 0.438 0.3054 0.5162 0.081 0.1429 0.2927 4.202

Creamy Fireflies 0.2454 0.3921 0.260 0.3563 0.5384 0.037 0.2073 0.3691 0.507 0.3476 0.5611 0.035 0.1402 0.2916 4.264

MIPT_MSU 0.2251 0.3755 0.404 0.3717 0.5540 0.017 0.1689 0.3276 0.888 0.3739 0.5754 0.014 0.1489 0.3029 3.591

HAIR 0.2388 0.3847 0.257 0.3558 0.5363 0.047 0.1952 0.3528 0.615 0.3611 0.5741 0.039 0.1366 0.2870 4.995

KAENEN 0.2370 0.3817 0.426 0.3375 0.5240 0.060 0.1886 0.3466 1.011 0.3060 0.5235 0.049 0.1402 0.2906 4.504

BachPropagate 0.2405 0.3872 0.293 0.3364 0.5171 0.038 0.1919 0.3501 0.778 0.3005 0.5084 0.035 0.1418 0.2944 4.097

Definitive Turtles 0.2366 0.3830 0.424 0.3342 0.5195 0.077 0.1931 0.3532 0.877 0.3062 0.5208 0.056 0.1377 0.2917 4.643

IN3PD 0.2426 0.3882 0.296 0.3080 0.4813 0.069 0.1911 0.3504 0.597 0.3163 0.5241 0.046 0.1341 0.2850 4.877

The highest R-prec and NDCG as well as the lowest clicks are marked as bold.

playlist. This might be also due to the fact that the proposed solutions could not handle the
title desirably.

• In general, the team hello world! performed well when the first tracks of the playlists are
given. However, the teams vl6 andMIPT_MSU achieved the best results when the tracks are
given in a random order. The team Avito also achieved the highest performance multiple
times for some of the playlists that contain a few tracks.

• The performance of the models in the main track is slightly higher than that in the creative
track. The reason might be that adding external resources increases the complexity of the
models and given the amount of training data, the models could not take advantage of
external resources, effectively.

The approaches used by the top-performing teams are briefly described in the next two sections.

4 TOP-PERFORMING APPROACHES: MAIN TRACK

In this section, we provide a brief analysis of the approaches taken by the top 10 teams in the main
track. We further explain the approaches used by the top 3 teams in more detail.

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 5, Article 57. Publication date: September 2019.



An Analysis of Approaches Taken in the ACM RecSys Challenge 2018 57:9

Table 5. The Performance of Top 10 Teams in the Creative Track for Different Types of Playlists

in the Challenge Set

Type 1 Type 2 Type 3 Type 4 Type 5

Team title only title + first 5 tracks only first 5 tracks title + first 10 tracks only first 10 tracks

R-prec NDCG clicks R-prec NDCG clicks R-prec NDCG clicks R-prec NDCG clicks R-prec NDCG clicks

vl6 0.0979 0.2044 10.746 0.2032 0.3773 0.889 0.2084 0.3840 0.652 0.2094 0.3978 0.439 0.1949 0.3733 0.647

Creamy Fireflies 0.0946 0.1961 10.899 0.1978 0.3682 1.033 0.2095 0.3840 0.742 0.2019 0.3800 0.661 0.1919 0.3650 0.900

KAENEN 0.0953 0.2053 10.563 0.1943 0.3617 1.172 0.2056 0.3776 1.046 0.1968 0.3754 0.752 0.1899 0.3616 0.958

cocoplaya 0.0724 0.1786 10.060 0.1877 0.3559 1.047 0.1962 0.3629 0.815 0.1954 0.3763 0.532 0.1824 0.3526 0.656

BachPropagate 0.0720 0.1794 10.662 0.1929 0.3607 1.173 0.2033 0.3761 0.956 0.1942 0.3747 0.672 0.1886 0.3599 0.943

Trailmix 0.0815 0.1817 12.638 0.1894 0.3585 1.124 0.2058 0.3798 0.889 0.1965 0.3776 0.749 0.1875 0.3608 0.957

teamrozik 0.0955 0.1959 11.363 0.1827 0.3405 1.522 0.1986 0.3592 0.868 0.1923 0.3604 0.730 0.1843 0.3482 0.873

Freshwater Sea 0.0885 0.1870 11.367 0.1837 0.3448 1.271 0.1985 0.3659 0.924 0.1800 0.3481 0.719 0.1761 0.3364 1.012

Team Radboud 0.0883 0.1951 12.853 0.1858 0.3455 1.340 0.1982 0.3658 0.903 0.1899 0.3627 0.683 0.1818 0.3469 0.786

spotif.ai 0.0720 0.1750 10.157 0.1674 0.3101 1.740 0.1778 0.3254 0.982 0.1742 0.3328 0.935 0.1679 0.3197 0.958

Avito 0.0800 0.1831 9.934 0.1634 0.3289 1.124 0.1672 0.3328 0.842 0.1772 0.3529 0.530 0.1616 0.3276 0.614

Type 6 Type 7 Type 8 Type 9 Type 10

Team title + first 25 tracks title + 25 random tracks title + first 100 tracks title + 100 random tracks title + first track

R-prec NDCG clicks R-prec NDCG clicks R-prec NDCG clicks R-prec NDCG clicks R-prec NDCG clicks

vl6 0.2485 0.4006 0.265 0.3710 0.5603 0.023 0.1869 0.3523 0.636 0.3638 0.5825 0.021 0.1497 0.3065 3.527

Creamy Fireflies 0.2454 0.3921 0.261 0.3534 0.5341 0.028 0.2081 0.3688 0.476 0.3517 0.5645 0.034 0.1427 0.2926 4.218

KAENEN 0.2373 0.3815 0.417 0.3372 0.5240 0.058 0.1886 0.3465 0.993 0.3060 0.5229 0.048 0.1392 0.2896 4.475

cocoplaya 0.2418 0.3886 0.154 0.3254 0.5090 0.034 0.1884 0.3439 0.619 0.2992 0.5069 0.065 0.1331 0.2812 4.395

BachPropagate 0.2354 0.3812 0.368 0.3189 0.5001 0.040 0.1885 0.3435 1.085 0.2897 0.4935 0.055 0.1402 0.2897 4.075

Trailmix 0.2407 0.3905 0.309 0.3352 0.5151 0.046 0.1863 0.3492 0.854 0.3049 0.5086 0.034 0.1313 0.2815 4.989

teamrozik 0.2380 0.3774 0.210 0.3340 0.5024 0.024 0.1862 0.3394 0.715 0.3113 0.5047 0.041 0.1316 0.2808 5.290

Freshwater Sea 0.2268 0.3635 0.196 0.2984 0.4663 0.061 0.1859 0.3373 0.730 0.2845 0.4753 0.085 0.1296 0.2796 4.937

Team Radboud 0.2267 0.3652 0.337 0.3130 0.4877 0.080 0.1759 0.3225 0.874 0.2865 0.4881 0.069 0.1358 0.2841 5.009

spotif.ai 0.2098 0.3363 0.427 0.3397 0.5156 0.024 0.1627 0.3044 0.919 0.3344 0.5416 0.024 0.1186 0.2334 6.499

Avito 0.2171 0.3580 0.239 0.2786 0.4432 0.110 0.1735 0.3287 0.617 0.2366 0.4296 0.195 0.1083 0.2524 4.783

The highest R-prec and NDCG as well as the lowest clicks are marked as bold.

High-level characteristics of the winning approaches are presented in Table 6. As shown in the
table, several teams took advantage of a two-stage architecture for the playlist continuation task.
In such an architecture, the first stage model retrieves a small set of tracks (compared to the total
number of tracks in the dataset), while the second stage focuses on re-scoring or re-ranking the
output of the first stage model with the goal of accuracy improvement. Therefore, a high-recall
model is desired for the first stage, however, a high-precision model is preferred for the second
stage. The reason for making this decision is mainly related to efficiency. However, the two-stage
architecture can also improve the APC performance. Among the top 10 teams in the main track,
vl6 [51], Avito [42], HAIR [55], BachPropagate [23], and IN3PD [14] took advantage of a multi-
stage architecture. Multi-stage models have been extensively explored for improving efficiency
and effectiveness in various retrieval and recommendation settings [8, 11, 30, 32, 52].

In addition, matrix factorization, as a dominant approach in collaborative filtering (CF), was
also employed by several top-performing teams, including vl6 [51], Avito [51], KAENEN [34], and
IN3PD [14]. These models mostly create an incomplete playlist-track matrix and use matrix fac-
torization to learn a low-dimensional dense representation for each playlist and track. They learn
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Table 6. Characteristics of Top-performing Approaches

in the Main Track

Rank Team Two stage MF NN LTR
1 vl6 ✓ ✓ ✓ ✓
2 hello world! ✗ ✗ ✓ ✗
3 Avito ✓ ✓ ✗ ✓
4 Creamy Fireflies ✗ ✗ ✗ ✗
6 HAIR ✓ ✗ ✓ ✓
7 KAENEN ✗ ✓ ✗ ✗
7 BachPropagate ✓ ✗ ✓ ✓
9 Definitive Turtles ✗ ✗ ✗ ✗
10 IN3PD ✓ ✓ ✗ ✗

Two stage, MF, NN, and LTR denote two-stage cascaded architecture, ma-
trix factorization, neural networks, and learning to rank, respectively.

similar representations for the tracks that often occur together in user-created playlists. There-
fore, the tracks from a single artist (band), an album, or a music genre may be assigned close
representations. The matrix factorization algorithms used by the top teams include weighted reg-
ularized matrix factorization (WRMF) [20], LightFM with a weighted approximate-rank pairwise
(WARP) loss [29], and Bayesian personalized ranking (BPR) [40]. Interestingly, some teams, in-
cluding HAIR [55] and Definitive Turtles [26], were able to achieve promising results using simple
neighborhood-based collaborative filtering methods.
Moreover, due to the high capacity of neural networks to learn task-specific representations, a

number of top-performing teams used neural network models to produce accurate predictions for
the APC task. These neural approaches include: (1) simple feed-forward networks for predicting
tracks given each playlist (e.g., a word2vec-style model [38]) or for neural collaborative filter-
ing [18], (2) convolutional models for playlist embedding or extracting useful information from
playlist titles, (3) recurrent neural networks and in particular long short-term memory networks
for modeling the sequence of tracks in the playlists, and (4) autoencoders for learning playlist
representations.
Most top-performing teams that used a two-stage architecture built their second stage based

on (mostly pairwise) learning to rank models. These models were designed to re-rank a small
number of tracks given a set of features produced by different models, including the first-stage
model, as well as several heuristic hand-crafted features. The tree-based models, such as XGBoost
[10], GBDT [16], and LambdaMART [5], were the popular learning to rank algorithms among the
top teams in the challenge.
It is notable that some top-performing teams used information retrieval techniques mainly de-

veloped for the ad hoc retrieval task. For instance, inverse document frequency (IDF) weighting
[22], TF-IDF weighting [44], BM25 weighting [41], and relevance model [31] (a pseudo-relevance
feedback model) were, respectively, employed by teams Definitive Turtles [26], KAENEN [34],
Creamy Fireflies [1], and BachPropagate [23].
An important challenge in the APC task is dealing with cold-start playlists, i.e., the playlists

with only title (no track). Some teams tried to deal with such special cases differently by trying to
learn a relationship between the playlist titles and its tracks. Among which, neural networks and
matrix factorization models are notable that predict the tracks in a playlist, given its title.
In the following, we detail the approaches taken by the top three teams in the main track:
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vl6 team: The vl6 team used a two-stage architecture, where the first one is based on Weighted
Regularized Matrix Factorization (WRMF) [20], and the second one is implemented using XGBoost
[10], a gradient boosting learning to rank model. In addition to the output of the WRMF model,
few models were used to produce features for the XGBoost model. These models include a con-
volutional neural network for playlist embedding, user-user and item-item neighborhood-based
collaborative filtering models, and a set of hand-crafted features. Note that the cold-start instances
(those that only consists of a title with no track) were handled separately. For such cases, the
vl6 team used a matrix factorization on top of the playlist titles. For a detailed description of the
approach used by the vl6 team, refer to Reference [51].

hello world! team: The team hello world! linearly combined the results produced by two dif-
ferent models: an autoencoder model and a convolutional neural network. The autoencoder model
tries to reconstruct track lists and artist lists for each playlist. To model both marginal and joint
information across playlist and contents, the model was trained using a “hide-and-seek” idea. In
other words, either the track list or the artist list was randomly deactivated in the input of the
autoencoder. To use the title of playlist, especially for the cold-start situations, a character-level
convolutional neural network (charCNN) was used to learn a representation from the playlist’s ti-
tle. This can be viewed as a classification model: predicting the tracks in each playlist given its title.
In the linear combination, the output of the charCNN was weighted higher for shorter playlists.
For a detailed description of the approach used by the team hello world!, we refer the reader to
Reference [53].

Avito team: Similar to the first team, the team Avito also used a two-stage architecture. The
first stage is based on a matrix factorization model with the weighted approximate-rank pair-
wise (WARP) loss, implemented in LightFM [29]. Two separate models were trained, one based on
playlist-track information and the other one based on the playlist titles. The union of the outputs
of these two models were re-ranked by the second stage model, which is a XGBoost learning to
rank model [10]. In addition to the LightFM features, some additional feature engineering was
done to boost the performance. For a detailed description of the approach used by the Avito team,
refer to Reference [42].

5 TOP-PERFORMING APPROACHES: CREATIVE TRACK

In this section, we provide a brief analysis of the approaches taken by the top 10 teams in the
creative track, in which teams were allowed to use external resources.13 We further explain the
approaches followed by the top 3 teams in more detail.
A first observation when reviewing the algorithms of the top performers in the creative track

reveals that most of the teams only slightly altered their algorithms for the main track, e.g., by
adding to their pipeline a final audio content-based re-ranking approach [34] or by extending their
content-based filtering approaches by enriching the provided meta-data with audio information
[1]. Most of what was said above for themain track therefore also holds for the approaches taken in
the creative track, in particular the superior performance of two-stage architectures, use of neural
networks, and special handling of cold-start situations.
Interestingly, except for one team (spotif.ai), all top 10 teams participating in the creative track

also participated in the main track (see Table 3). However, their ranks most often differed between
the main and creative tracks: vl6 (ranked 1st in main track), Creamy Fireflies (4th in main), KAE-
NEN (7th in main), cocoplaya (11th in main), BachPropagate (7th in main), Trailmix (13th in main),
teamrozik (63rd in main), Freshwater Sea (19th in main), Team Radboud (21st in main), and Avito

13When teams started to submit the same approaches to the creative and main tracks (due to the lower popularity of the
creative one), we required submissions to the creative track to exploit external data.

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 5, Article 57. Publication date: September 2019.



57:12 H. Zamani et al.

(3rd in main). The spotif.ai team, which solely participated in the creative track, employed a recur-
rent neural network architecture (long short-term memory [19]) that was particularly designed
to cope with sequential data, in addition to a weighted regularized matrix factorization (WRMF)
approach [20].
Remarkably, almost all teams participating in the creative track used the Spotify API14 as ex-

ternal data source and downloaded the provided audio content features. A notable exception was
team cocoplaya [15], who retrieved 30s snippets of each track from Spotify and computed their
own audio-based features, in particular the output of a probabilistic genre classifier for each of
13 genres [2]. Others included external information when filtering playlist titles using stopword
lists or pre-defined lists of music-related terms (e.g., playlist, songs, music) [54]. Still others used
pre-trained word embeddingmodels, such as the CBOWmodel fromword2vec [38], to create track
embeddings [23].

In the following, we detail the approaches taken by the top three teams in the creative track:
vl6 team: The vl6 team also ranked first in the creative track. Their approach taken here largely

resembles the one taken in the main track (see Section 4). The only difference is that the feature
set used in the second stage of their approach (feature selection using an XGBoost model) was ex-
tended by content-based music descriptors of tracks. These descriptors were acquired through the
Spotify Audio API and comprise acousticness, danceability, energy, instrumentalness, key, live-
ness, loudness, mode, speechiness, tempo, time signature, and valence. However, no substantial
and consistent improvement was achieved by adding these features (compare Tables 2 and 3). For
a detailed description of the approach used by the vl6 team, refer to Reference [51].

Creamy Fireflies team: This team used an ensemble of known techniques, which they intel-
ligently combined in an informed way to select and tune the individual techniques depending on
the underlying playlist characteristics (from only title to 100 tracks). Five base approaches were
used: (1) popularity-based recommendation, (2) track- and (3) playlist-based collaborative filtering
(on the playlist-track matrix), as well as (4) track- and (5) playlist-based content-based filtering;
(4) using artist and album identifiers as features; (5) additional features derived from playlist titles.
More precisely, playlist features were created by applying techniques from information retrieval
and natural language processing to clean and enrich the playlist titles (e.g., tokenization, normal-
ization, and stemming). In a tuning step, the authors then sought optimal parameters for each
combination of algorithm and playlist category (cf. Section 1.3). Their base ensemble approach
subsequently weighted the five algorithms for each playlist category and other playlist charac-
teristics (e.g., length and track positions). The final score was computed as the weighted sum of
the scores given by each algorithm and playlist category. The authors also investigated another
ensemble model, based on a proposed measure of artist heterogeneity. Clustering the playlists
according to this measure and performing a cluster-based filtering slightly improved NDCG and
R-precision. Eventually, several boosts depending on the playlist category were investigated. For
instance, assuming that the last tracks in a (long) seed playlist are the most important ones with
respect to the continuation, candidate tracks more similar to those last ones in the seed playlist
were given higher weight.
In the creative track, team Creamy Fireflies additionally used the Spotify API to acquire the

following features for each track: acousticness, danceability, energy, instrumentalness, liveness,
loudness, speechiness, tempo, valence, and popularity. They extended their content-based filtering
and collaborative filtering models described above to include track-level similarity. To this end, a
sparse representation of track clusters was used, in which clusters were generated by grouping

14https://developer.spotify.com/documentation/web-api/reference/tracks/get-audio-features.
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tracks into four equally sized clusters based on the values of each audio feature. For a detailed
description of the approach used by the Creamy Fireflies team, refer to Reference [1].
KAENEN team:Also the KAENEN team proved that it is possible to achieve remarkable results

without using very complex approaches. They combined nearest-neighborhood techniques with
common matrix factorization algorithms, which were adapted to the application domain. More
precisely, they adapted an item-based CF approach, treating playlists as users and computing co-
sine similarity between item vectors (binary, over all playlists). To alleviate the popularity bias
that affects such co-occurrence-based similarities, inverse document frequency (IDF) weighting is
applied to each candidate track, i.e., tracks that appear in many playlists are downweighted. As
a second approach, the team proposed a playlist-based nearest neighbor method, which uses the
same framework as the item-based CF approach, but this time computing similarities over binary
playlist vectors instead of track vectors. Each candidate track t is then ranked with respect to the
similarity to the most similar playlists in which t occur, again considering the IDF weighting. As
third approach, the team adapted a standard matrix factorization technique using alternating least
squares (ALS) optimization. To compute the ranking of a candidate track t with respect to a seed
playlist p, the latent factors of all tracks in p are IDF-weighted and the dot product of the arith-
metic mean of this set of latent factors (constituted of all tracks in p) and the latent factors of t
is used as final score. To address the cold-start scenario (only playlist title given), the team used
a simple string matching technique applied on tokenized and stemmed playlist titles to identify
the most similar playlists to p. In addition, they used a matrix factorization approach (with ALS
optimization) treating unique playlist names as users and occurrences of tracks in the correspond-
ing playlists as “ratings.” The latent factors were then used to identify the playlists most similar
to p. The individual approaches described above were subsequently combined into a hybrid rec-
ommender system, using switching and weighting hybridization schemes [6]. In cold-start cases
where the string matching approaches did not produce enough results (i.e., 500 tracks), the missing
ones were filled with the most popular tracks of the MPD.
For the creative track, like the other top performers, the team KAENEN retrieved audio fea-

tures using the Spotify API. They then used a re-ranking strategy as follows. If the mean standard
deviation of the audio features of the seed playlist p’s tracks fell below a threshold (low content
diversity), then the original score of a candidate track t with respect top was re-weighted by cosine
similarity between t ’s content features and the mean of the content features of all tracks in p. For
a detailed description of the approach used by the KAENEN team, refer to Reference [34].

6 OTHER NOTABLE APPROACHES

In the previous sections, we discussed the approaches of the top teams in each of the challenge
tracks. A detailed analysis of all 117 active teams’ approaches is unfeasible, due to the sheer num-
ber of teams, as well as the fact that only some of them published their approach in detail, or
had sufficient documentation in the code they shared (with many teams not sharing their code
at all). However, based on a review of some of the teams that did not achieve top scores, we see
a similar variety of techniques used as in the top-performing submissions. Some combination of
collaborative filtering, word embedding approaches, deep neural network architectures, informa-
tion retrieval techniques, and ensembles thereof are used by teams who achieved both higher and
lower scores. This raises the question of what makes one approach score better at the task than
another? We can expect implementation details such as hyperparameter tuning, dataset prepro-
cessing, and sampling strategies to have a significant impact on the performance of an approach.
Different formulations of objective functions, different approaches to extracting features from the
dataset, as well as different architectures and sequencing of operations could also have an effect
on the overall results. To provide some context toward answering this question, we present two
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teams that did not achieve scores in the top 10 but that took different approaches to solving the
automatic playlist continuation task:
Unconscious Bias team: The Unconscious Bias placed 43rd in the main track. Their approach

is based on applying adversarial autoencoders [35] to the playlist continuation task. On the sur-
face, this approach shares similarities to the approach taken by team hello world!, which came in
2nd place in the main track. Team hello world! [53] used a combination of a content-aware au-
toencoder as well as a convolutional neural network on playlist titles to arrive at their score. In
contrast to hello world!’s various novel dropout strategies to train an autoencoder network, the
Unconscious Bias team uses an adversarial approach as a regularization technique, which allows
the network to generalize from the training set to unseen examples, in a way that also matches the
prior distribution. Interestingly, Unconscious Bias evaluated the general autoencoder approach as
a baseline in their experiments, and found performance to be lower than their proposed adver-
sarial autoencoder approach. Clearly there are very significant differences in the two approaches,
even though both utilize autoencoders. To delve deeper into these differences and how they might
have resulted in such a large difference in scores, we recommend reading both References [48]
and [53].
D2KLab team: Like many other teams, D2KLab took an ensemble approach to the problem,

combining several methods together to solve the task, including a specialized method to handle
the cold-start (title-only) use case. Their core approach involves an ensemble of multiple Recurrent
Neural Networks (RNN), in particular, Long-Short Term Memory (LSTM) cells trained to predict
the next track given a sequence of tracks. The inputs to the system are word2vec embeddings
at the track, album, and artist level. To deal with playlist titles, and particularly to address the
cold-start use case, they also derived title embeddings using the fastText [3] algorithm, trained on
n-grams of playlist titles included in groups of playlists that are clustered in the playlist embedding
space.
For their creative track submission, D2KLab also included lyric metadata by linking the MPD

tracks with the WASABI lyric corpus [37]. They developed a suite of lyric features that describe
the different stylistic and linguistic dimensions of a song text, for example, vocabulary and emo-
tion. These features were vectorized and concatenated with the other embedding-based features
as inputs to the RNN network.
In the main track, their submission achieved an R-Precision of 0.1808, NDCG of 0.3252, and

Clicks score of 3.086, which ranks them in the 37th position. In the creative track, their approach
achieved an R-Precision of 0.1852, NDCG of 0.3334, and Clicks score of 3.026, putting them in
13th place. The improved scores in the creative track suggests that their use of lyric features adds
valuable information for the playlist continuation task. For a detailed description of the approach
used by the D2KLab team, refer to Reference [39].

7 SUMMARY OF KEY FINDINGS

In this section, we briefly summarize our key findings from the challenge and the submitted solu-
tions. In summary,most approaches ensemble the results obtained by several well-knownmethods,
including matrix factorization models, neighborhood-based collaborative filtering models, basic
information retrieval techniques, and learning to rank models. The results show that the models
work best when a sufficient number of tracks per playlist is provided and they are randomly se-
lected from the playlist (as opposed to the sequential order from the beginning of the playlist).
The submitted solutions could not effectively use playlist titles for APC. This might be due to the
sparseness of the titles as well as the scale of the training data. In addition, none of the submitted
solutions tried to infer the user intents from the playlist titles. The results also demonstrate that
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the performance of different models are close to each other when few tracks per playlist are given.
However, when the number of tracks increases, a more diverse set of results is observed.
In the creative track, most teams exclusively used the descriptors from the Spotify API, and only

few of them tried to extract their own features from the audio. It is worth noting that surprisingly,
there is no significant gap between the results in the main and creative tracks. Indeed, the results
for the creative track are marginally worse than those obtained for the main track. This might
be due to the fact the inclusion of side information makes the problem more complex and the
submitted solutions could not successfully generalize the information obtained from the exploited
external resources.

8 GENERALIZABILITY OF APPROACHES AND RESULTS

The RecSys Challenge 2018 focused on the topic of sequence-aware music recommendation and
was deliberately and necessarily a narrow and clearly defined task (playlist continuation) as usual
for such a competition. Nevertheless, some of the best-performing approaches are transferable to
target domains other than music, though to different extents, which also depends on the target
domain. Most straightforward, the approaches submitted to the main track, which therefore do
not use any external side information, could be adapted easily to multimedia domains such as
(short) video, where users of platform like Youtube create and share their playlists of video clips.
Likewise, in the online learning and training domains, curated sequences of exercises or tasks are
made available by teachers and students. Both share similar characteristics in the sense that the
sequence of items does matter and consumption times are comparable in magnitude to those of
songs. Both factors, i.e., importance of sequences and similar consumption time [46], may prevent
the immediate applicability of these approaches to other targets such as story lines of images (much
shorter consumption time) or book reading lists (much longer consumption times and sequence
often not important).
Nonetheless, for such domains that are further away from music, other ways of adopting the

proposed approaches might be viable. The models constructed from the provided dataset by some
teams, most notably the two top-performing ones in the main track (vl6 and hello world!), which
are based on deep neural networks, could be used in a transfer learning setting to re-purpose the
model for related tasks [17].
Most solutions submitted to the creative track are harder to generalize, in particular if they are

closely tied to content-based features. However, the level of generalizability obviously depends on
the nature of the leveraged content features, which were used at the song and at the playlist level.
Noteworthy, all top 3 teams (and many others) in the creative track used the Spotify API to extract
audio descriptors (tempo, loudness, danceability, etc.). As an example, team Creamy Fireflies relied
in the creative track on artist and album identifiers but also on Spotify’s audio content descriptors
to implement content-based filtering. While the former (identifiers) are practically available in
almost all other domains too, audio content features are limited to a few domains (e.g., podcasts
or videos).
As for the achieved results in terms of performance metrics, they strongly depend on the dataset

used and vary according to the type of playlist in the challenge set on which they are computed.
R-precision, NDCG, and number of clicks are therefore not comparable to results achieved on
similar tasks in domains other than music. We are also not aware of existing research works or
benchmarking challenges that easily compare to the RecSys Challenge 2018 in terms of the nature
of the dataset and the distinction between different types of input playlists used in the evaluation of
approaches. A detailed investigation of approaches and achievable results in other target domains
using different kinds of playlists and target items therefore remains an avenue for future research.
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Another avenue for generalization is given by the fact that the problem for playlist type 1 (title
only) resembles a standard search or retrieval task, in which the query is expressed as text, i.e., the
name of the playlist to create. Successful approaches, taken in the RecSys Challenge 2018, which
particularly address playlists of this type could therefore lead to improved capabilities to search and
retrieve music by arbitrary natural language input. This would complement the current research
on text-based music retrieval, which most often leverages (user-generated or expert-created) an-
notations or tags.

9 FUTURE DIRECTIONS AND OPEN AVENUES

Even though the RecSys Challenge 2018 has stimulated a wealth of ideas and creative solutions,
we contemplate several directions for additional research that might be worth pursuing.

Integration of Additional Content and Context Feature: Given that solutions in the creative track
did not outperform those in the main track, the question arises whether the right or good external
data sources have been exploited by the algorithms submitted to the creative track. Almost all
submissions relied on content features provided by the Spotify API, omitting the time-consuming
task of computing other (maybe better) content descriptors from audio (snippets) of the tracks.
Also additional contextual information about tracks, albums, or artists, e.g., Wikipedia articles or
album reviews, could be integrated in the future.

Explicit Inference of Intent or Purpose: In cases where a playlist title is given, sophisticated natural
language processing techniques (NLP) could be applied, trying to uncover the listener’s intent or
purpose of the playlist. However, identifying such user intents to listen to music, the most impor-
tant of which are arousal and mood regulation, achieving self-awareness, and expressing social
relatedness [45], is challenging. Therefore, NLP techniques will likely have to be complemented
by insights gained from gratification [33] and other psychological theories.

Modeling and Transferring Sequence-specific Characteristics: We also see great potential for fu-
ture approaches that analyze andmodel certain sequence-specific characteristics of user-generated
playlists, formalize them, and integrate them into the sequential recommendation process. Simi-
larly to the artist heterogeneity measure proposed by team Creamy Fireflies [1], aspects of overall
playlist coherence (e.g., in terms of genre, style, or acoustic descriptors), coherence of direct song-
to-song transitions, or item diversity measures could be computed from user-generated playlists
and considered as (weak) constraint in the process of APC, i.e., the seed playlist should be contin-
ued in a way that maintains the same level of coherence, diversity, and so on.

Evaluation in Terms of Perceived Recommendation Quality: In addition to the mostly accuracy-
related performance measures used to gauge performance of submissions, user-centric measures
of perceived recommendation quality should be adopted in the future, to obtain a truly user-centric
perspective of recommendation quality. Such measures of perceived recommendation quality can
be assessed through questionnaires in online evaluation settings. Existing questionnaires such
as [13, 28] should be extended to the sequence-aware music domain and may eventually include
aspects of perceived accuracy, diversity, coherence, satisfaction, novelty, serendipity, and level of
personalization.

APPENDICES

A EVALUATION METRICS

As mentioned earlier in Section 1.4, the quality of submissions were assessed based on the value of
three different evaluation metrics: R-precision, normalized discounted cumulative gain (NDCG),
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and recommended songs clicks. In this appendix, we provide in detail description of each of these
metrics.

• R-precision measures the fraction of recommended relevant items among all known rele-
vant items (i.e., the number of withheld tracks) and is invariant of the order in which tracks
are retrieved. R-precision is calculated on both the track and the artist level, with artist
matches contributing a partial score (of 0.25) even if the predicted track is incorrect. LetGT

and GA be the set of unique track IDs and artist IDs in the ground truth, respectively. Let
ST be the set of track IDs in the top |GT | tracks recommended in the submitted playlist, and
SA be the set of unique artist IDs in the same set. Then,

R-precision =
|ST ∩GT | + 0.25 · |SA ∩GA |

|GT | .

The higher the R-precision, the better.
• NDCG [21] assesses the ranking quality of the recommended tracks and increases when

relevant tracks are placed higher in the recommendation list. This metric was originally
proposed to evaluate the effectiveness of information retrieval systems. Nowadays, it is
also frequently used for evaluating (music) recommender systems. Assuming that tracks
for each playlist are sorted according to their recommendation score in descending order,
the discounted cumulative gain (DCG) is then defined as follows:

DCG =
N∑

i=1

ri
log2 (i + 1)

,

where ri is the label (as found in the ground truth) for the item ranked at position i for the
playlist, and N is the length of the recommendation list (here, N = 500). DCG is normalized
by IDCG—the DCG value for the best possible ranking obtained by ordering the tracks by
true ratings in descending order. NDCG is then calculated as

NDCG =
DCG

IDCG
.

The higher the NDCG, the better.
• Recommended songs clicks (or shortly just “clicks”) is a user-centric beyond-accuracy

measure that relates to a Spotify feature called Recommended Songs. Given a playlist title
and/or set of tracks in a playlist, this feature recommends 10 tracks to add to the playlist. The
list can be refreshed to produce 10 more tracks. The recommended songs clicks metric is the
number of refreshes needed before the first relevant track is encountered. It is formalized
as shown in the following equation, where R is the list of recommended tracks andG is the
ground truth, i.e., the omitted tracks from the real playlist:

clicks =
⌊ argmini {Ri : Ri ∈ G} − 1

10

⌋
.

If there is no relevant track in R, then a value of 51 is picked, which is 1 plus the maximum
number of clicks possible. The lower the recommended songs clicks, the better.

B SAMPLE PLAYLIST FROM THE DATASET

A sample truncated playlist from the MDP dataset is presented below.
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Listing 1. A truncated sample playlist from MPD.
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