
The Importance of Song Context and Song Order
in Automated Music Playlist Generation

Andreu Vall,1 Massimo Quadrana,2 Markus Schedl,1 and Gerhard Widmer1

1 Department of Computational Perception, Johannes Kepler University, Austria
2 Pandora Media, Inc., CA, U.S.A.

andreu.vall@jku.at

Abstract
The automated generation of music playlists can be naturally
regarded as a sequential task, where a recommender system suggests
a stream of songs that constitute a listening session. In order to
predict the next song in a playlist, some of the playlist models
proposed so far consider the current and previous songs in the
playlist (i.e., the song context) and possibly the order of the songs in
the playlist. We investigate the impact of the song context and the
song order on next-song recommendations by conducting dedicated
off-line experiments on two datasets of hand-curated music playlists.
Firstly, we compare three playlist models, each able to consider a
different song context length: a popularity-based model, a song-
based Collaborative Filtering (CF) model and a Recurrent-Neural-
Network-based model (RNN). We also consider a model that predicts
next songs at random as a reference. Secondly, we challenge the
RNN model (the only model from the first experiment able to
consider the song order) by manipulating the order of songs within
playlists. Our results indicate that the song context has a positive
impact on the quality of next-song recommendations, even though
this effect can be masked by the bias towards very popular songs.
Furthermore, in our experiments the song order does not appear as a
crucial variable to predict better next-song recommendations.

Introduction
Automated music playlist generation is a specific task in

music recommender systems in which the user receives a list
of song suggestions that constitute a listening session, usually
listened to in the given order. This is in contrast to the
browsing scenario, in which users receive a collection of
recommendations and actively choose their preferred option.

According to interviews with practitioners and postings to
a dedicated playlist-sharing website, the choice of songs and
their order–or at least their relative position–have been
identified as important aspects when compiling a playlist
(Cunningham et al., 2006). Although some approaches to
playlist generation take the previous songs in the playlist (i.e.,
the song context) and the song order into consideration, to the
best of our knowledge, they do not explicitly analyze the
importance of these variables.

Modeling Music Playlists
In this section we describe the models we use for

automated music playlist generation. We adopt the following
approach for every model. Two disjoint sets of playlists are
available, one for training and one for test, such that all the
songs in the test playlist also occur in the training playlists.
Hyperparameter tuning, if necessary, is performed on a
validation split that is withheld from the training set. Given
one or several songs from a test playlist, a trained playlist

model has to be able to rank all the candidate songs according
to how likely they are to be the next song in the playlist.

Song Popularity

This model computes the frequency of each song in the
training playlists. At test time, the candidate songs are ranked
according to their frequency. Thus, the predictions of this
model (equivalent to a unigram model–see e.g., Manning &
Schütze (2000)) are independent of the current song.

Song-Based Collaborative Filtering

This is an item-based Collaborative Filtering (CF) model.
A song s is represented by the binary vector ps indicating the
playlists to which it belongs. The similarity of each pair of
songs si, sj in the training set is computed as the cosine
between psi and psj. At test time, the next-song candidates are
ranked according to their similarity to the current song, but
previous songs in the playlist are ignored.

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of neural
network models particularly suited to processing sequential
data. They have a hidden state that accounts for the input at
each time step while recurrently incorporating information
from previous hidden states.

We adopt the approach proposed by Hidasi et al. (2016),
where an RNN model with one layer of gated recurrent units
is combined with a loss function designed to optimize the
ranking of next-item recommendations. At test time, given the
current and all the previous songs in the playlist, the RNN
outputs a vector of song scores that is used to rank the next-
song candidates.

Playlist Datasets
The “AotM-2011” dataset (McFee & Lanckriet 2012) is a

collection of playlists derived from the playlist-sharing
platform Art of the Mix (www.artofthemix.org). Each playlist
is represented by song titles and artist names, linked to the
corresponding identifiers of the Million Song Dataset (MSD)
(Bertin-Mahieux et al. 2011), where available.

The “8tracks” dataset is a private collection of playlists
derived from 8tracks (https://8tracks.com), an on-line
platform where users can share playlists and listen to playlists
other users prepared. Each playlist is represented by song
titles and artist names. Since there are many different
spellings for the same song-artist pairs, we mimic the AotM-
2011 dataset and use fuzzy string matching to resolve the song
titles and artist names against the MSD.

A considerable number of playlists in the AotM-2011
contain songs by one or very few artists. In order to study
more diverse playlists (which we assume to correspond to a
more careful compilation process), we keep only the playlists
with at least 3 unique artists and with a maximum of 2 songs
per artist. Although the 8tracks dataset is not affected by this
issue (the terms of use of the 8tracks platform require that no
more than 2 songs from the same artist or album may be
included in a playlist), we apply the same filters for the sake
of consistency. Furthermore, we keep only the playlists with at
least 5 songs. This ensures a minimum playlist length, that is
required to study the effect of the song position on model
performance. Finally, songs occurring in less than 10 playlists
are removed to ensure that the models have sufficient
observations for each song.

We randomly assign 80% of the playlists to the training set
and the remaining 20% to the test set. Note that full playlists
are assigned to either split. At test time, the model deals with
playlists that were never seen before. As in any
recommendation task blind to item content, the songs that
only occur in test playlists need to be removed because they
can not be modeled at training time.

The filtered AotM-2011 dataset includes 17,178 playlists
with 7,032 songs by 2,208 artists. The filtered 8tracks dataset
has 76,759 playlists with 15,649 songs by 4,290 artists.

Evaluation of Playlist Models
A trained playlist model is evaluated by repeating the

following procedure over all the test playlists. We show the
model the first song in a playlist. It then ranks all the
candidate songs according to their likelihood to be the second
song in that playlist. We keep track of the rank assigned to the
actual second song and of the fact that this was a prediction
for a song in second position. We then show the model the
first and the second actual songs. The model has to rank all
the candidate songs for the third position, having now more
context. In this way, we progress until the end of the playlist,
always keeping track of the rank assigned to the actual next
song and the position in the playlist for which the prediction is
made.

A perfect model would always rank the actual next song in
the first position. A random model would, on average, rank the
actual next song approximately in the middle of the list of
song candidates. An extremely poor model would rank the
actual next song in the last position. Note that the actual rank
values depend on the number of candidate songs available.

Previous research has often summarized the ranking
results in terms of recall at K, where K is the length of the list
of top next recommendations (see e.g., Hariri et al. (2012),
Bonnin & Jannach (2014), Hidasi et al. (2016)). However, the
proposed evaluation setting may be too pessimistic in the
music domain (Platt et al. 2002, McFee & Lanckriet 2011),
where songs other than the actual one may serve as valid
playlist continuations. As a consequence, long lists of next-
song candidates are needed to observe the model behavior. In
order to better observe the performance of each model, we opt
for analyzing the full distribution of predicted ranks,
summarized by the first quartile, the median and the third
quartile rank values (Figures 1 and 2). This approach also
facilitates the comparison of different models.

Song Context
Figure 1 displays the ranks attained by the actual next

songs in the test playlists, given the predictions of the
considered playlist models. The distributions of attained ranks
are split by the position in the playlist for which the next-song
prediction is made. The popularity-based model and the song-
based CF model, which have no context and a context of 1
song, respectively, do not improve their predictions as they
progress through the playlists. The RNN model, which is
aware of the full song context, improves its performance as it
progresses through the playlist.

Regarding the absolute model performance, it is worth
noting that the popularity-based model and the RNN model
show comparable overall performances, despite the fact that
the RNN model is much more complex. We could explain this
apparent contradiction in our previous work (Vall et al. 2017)
as an effect of the bias towards popular songs, common in the
music domain. We found that the popularity-based model
performs outstandingly well on the most popular songs, but
performs poorly on the infrequent songs. On the other hand,
the performance of the RNN model is unaffected by the song
popularity.

 AotM-2011

 8tracks

Figure 1. Distribution of ranks attained by the actual next songs
in the test playlists (lower is better) for the AotM-2011 (top) and
the 8tracks (bottom) datasets. Each panel corresponds to a
playlist continuation model. The x axis indicates the position in
the playlist for which a prediction is made. The y axis indicates
the attained ranks and its scale relates to the number of songs in
each dataset. The boxplots summarize the distribution of
attained ranks by their first quartile, median and third quartile
values. The number of rank values at every position is annotated.

Song Order
We consider three song order manipulation experiments.

For the first experiment we train the RNN model on original
playlists, but we evaluate it on shuffled playlists (we refer to
this setting as “shuffled test”). For the second experiment we
train the RNN model on shuffled playlists and evaluate it on
original playlists (we refer to this setting as “shuffled
training”). Finally, we train and evaluate the RNN model on
shuffled playlists (we refer to this setting as “shuffled training
and test”). Figure 2 displays the ranks attained by the actual
next songs in the test playlists, given the predictions of the
RNN model under the different song order randomization
experiments. The distributions of attained ranks are split by
the position in the playlist for which the next-song prediction
is made. The performance of the RNN model trained and
evaluated on original playlists is kept as a reference.

The performance of the RNN model is comparable for all
the song order randomization experiments, regardless of
whether the song order is maintained, broken at test time or
broken at training time. This result suggests that the song
order may not be a crucial variable for automated music
playlist generation. Even though we considered a competitive
RNN model, further investigation on order-aware models is
still required.

 AotM-2011

 8tracks

Figure 2. Distribution of ranks attained by the actual next songs
in the test playlists (lower is better) for the AotM-2011 (top) and
the 8tracks (bottom) datasets. The panels include the predictions
of the RNN on the original playlists and on the song order
randomization experiments. The x axis indicates the position in
the playlist for which a prediction is made. The y axis indicates
the attained ranks and its scale relates to the number of songs in
each dataset. The boxplots summarize the distribution of
attained ranks by their first quartile, median and third quartile
values. The number of rank values at every position is annotated.

Conclusion
In this work we explicitly analyzed the importance of

considering the song context and the song order for automated
music playlist generation. We conducted off-line experiments
in two datasets of hand-curated music playlists, where we
compared different playlist models with different capabilities.
Our results indicate that the song context has a positive impact
on next-song recommendations. Still, as we observed in
previous works, the bias towards populars songs can mask the
importance of considering the song context. On the other
hand, the song order did not appear as a relevant variable to
predict better next-song recommendations.

Acknowledgements. The authors want to thank Matthias
Dorfer, Bruce Ferwerda, Rainer Kelz, Filip Korzeniowski,
Rocııo del Rııo and David Sears for helpful discussions. This
research has received funding from the European Research
Council (ERC) under the European Union's Horizon 2020
research and innovation programme under grant agreement
No 670035 (Con Espressione).

References
Bertin-Mahieux, T., Ellis, D. P., Whitman, B., & Lamere, P. (2011).

The million song dataset. In Proceedings ISMIR.
Bonnin, G., & Jannach, D. (2014). Automated generation of music

playlists: Survey and experiments. ACM Computing Surveys,
47(2), 1–35.

Cunningham, S. J., Bainbridge, D., & Falconer, A. (2006). “More of
an art than a science”: Supporting the creation of playlists and
mixes. In Proceedings ISMIR.

Hariri, N., Mobasher, B., & Burke, R. (2012). Context-aware music
recommendation based on latent topic sequential patterns. In
Proceedings RecSys.

Hidasi, B., Karatzoglou, A., Baltrunas, L., & Tikk, D. (2016).
Session-based recommendations with recurrent neural networks. In
Proceedings ICLR.

Manning, C. D., & Schütze, H. (2000). Foundations of statistical
natural language processing. MIT Press.

McFee, B., & Lanckriet, G. R. (2011). The natural language of
playlists. In Proceedings ISMIR.

McFee, B., & Lanckriet, G. R. (2012). Hypergraph models of playlist
dialects. In Proceedings ISMIR.

Platt, J. C., Burges, C. J., Swenson, S., Weare, C., & Zheng, A.
(2002). Learning a Gaussian process prior for automatically
generating music playlists. In Proceedings NIPS.

Vall, A., Schedl, M., Widmer, G., Quadrana, M., & Cremonesi, P.
(2017). The importance of song context in music playlists. In
RecSys 2017 Poster Proceedings.

