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ABSTRACT

In this paper we propose to use a set of block-level au-
dio features for automatic tag prediction. As the proposed
feature set is extremely high-dimensional we will investi-
gate the Principal Component Analysis (PCA) as compres-
sion method to make the tag classification computationally
tractable. We will then compare this block-level feature
set to a standard feature set that is used in a state-of-the-
art tag prediction approach. To compare the two feature
sets we report on the tag classification results obtained for
two publicly available tag classification datasets using the
same classification approach for both feature sets. We will
show that the proposed features set outperform the stan-
dard feature set, thus contributing to the state-of-the-art in
automatic tag prediction.

1. INTRODUCTION

Today there exist many online music platforms like for ex-
ample Last.fm ! that allow users to annotate the songs they
are listening to with semantic labels, so called rags. This
way the users themselves collaboratively create semantic
descriptions of the available music universe. The tags as-
sociated with a song can then for example be used to search
for new music (fag-based browsing) or to automatically
generate music recommendations. One major drawback
of tag-based browsing or recommendation systems is that
in the case a song has not yet been annotated by a num-
ber of users too little or unreliable information is available
about a song, such that it cannot be included in the search
or recommendation process. This issues is known as the
cold-start problem [1].

One approach to solve the cold-start problem for tag-
based music search and recommendation systems is to pre-
dict tags that users would associate with a given song from
the audio signal itself. This task is called automatic tag
prediction and is a relatively new research area in Music
Information Retrieval (MIR). Automatic tag prediction can

! www.last.fm

Copyright: (©2010 Klaus Seyerlehnerl, Gerhard Widmer'+2, Markus Schedl*,

1

Peter Knees™ et al. This is an open-access article distributed under the terms

of the Creative Commons Attribution License 3.0 Unported, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

be interpreted as a special case of multi-label classifica-
tion. The task of tag prediction can be defined as follows:
Given a set of tags T = {t1,...,t4} and a set of songs
S = {s1,..., sg} predict for each song s; € S the tag an-
notation vector y = (y1,...,y4), where y; > 0 if tag ¢;
has been associated with the audio track by a number of
users, and y; = 0 otherwise. Thus, the y;’s describe the
strength of the semantic association between a tag ¢; and
a song s; and are called tag affinities or semantic weights.
If the semantic weights are mapped to {0, 1}, then they
can be interpreted as class labels. Although tag affinities
can be quite valuable in some applications, e.g. automatic
similarity estimation [2] or specific retrieval tasks, in this
paper we focus on the binary tag classification task, which
can be interpreted as a specific sub-task of tag prediction,
where a tag is either applicable for a given song or not.

In contrast to recent research on automatic tag predic-
tion, which basically focuses on improving the tag classifi-
cation approach [3, 4], in this paper we propose the use of
a new, more powerful set of audio features, namely block-
level features. Block-level feature have already proven to
be useful in automatic music genre classification [5] and
in automatic music similarity estimation [6]. Here we will
investigate if block-level features are also useful with re-
spect to the task of automatic tag classification. A specific
problem in this context that we will address is the high di-
mensionality of the described set of block-level features.

The rest of the paper is organized as follows: Section
2 discusses related work. Section 3 describes the two fea-
tures sets — block-level features and ‘standard’ feature set
— that are compared in the final evaluation. In section 4 we
present the tag classification approach used in the evalu-
ation. Section 5 presents the evaluation datasets, the per-
formance measures, and the results of the conducted tag
classification experiments. Conclusions and directions for
future work are given in Section 6.

2. RELATED WORK

Although automatic tag predictions is a relatively new
area in Music Information Retrieval the Music Information
Retrieval Evaluation eXchange (MIREX)? , a competitive
evaluation, has driven the development of several auto-
matic tag classification systems. A good overview of state-
of-the-art systems can therefore be found in the accom-
panying descriptions of the participating systems in the
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MIREX tag classification task. In the literature, in contrast,
there exist only a few publications focusing on automatic
tag prediction.

One of the most important contributions to the area
of automatic tag prediction is the work of Turnbull et al.
[7]. To the best of our knowledge, they proposed the first
tag prediction system based on a generative probabilistic
model, where each tag is modeled as a distribution over
the audio feature space (Delta-MFCC vectors). Further-
more, they also contributed to the evaluation of tag predic-
tion systems by creating an evaluation dataset, the CAL500
dataset (see Section 5.1). Another probabilistic approach
was proposed by Hoffman et al. [8]. Their Codeword
Bernoulli Average (CBA) model is a probabilistic genera-
tive latent variable model. Vector-quantized Delta-MFCCs
serve as observations to the generative model. Their ap-
proach is a simple and fast and, according to Hoffman
et al., outperforms the method of Turnbull et al. on the
CALS00 dataset.

Besides these probabilistic models, there are two recent
publications by Mahieux et al. [4] and Ness et al. [3] on
systems using a stacked hierarchy of binary classifiers. In
both of these there is one binary classifier per tag, at the
first level. Then the probabilistic output, the predicted tag
affinity, of each binary tag classifier is used as the input to
a second classification stage, where there is once more one
classifier per tag. The advantage of this setup is that the
second stage classifiers can now take into account the cor-
relations between tags. Implausible combinations of tag
predictions from the first stage can be corrected. We will
denote such a classification approach as “stacked general-
ization”, in accordance with [3]. For our feature set com-
parison we will use exactly the same stacked generalization
approach as proposed in [3], as this procedure is already
implemented and publicly available via the MARSYAS
(Music Analysis, Retrieval and Synthesis for Audio Sig-
nals)® open source framework. That not only permits us
to compare two feature sets using one and the same state-
of-the-art tag classification approach, but also to put the
obtained results into the context of the MIREX tag classi-
fication task: in last year’s (2009) run of the tag classifica-
tion contest the approach based of the MARSYAS frame-
work ranked second (with respect to the per tag f-score),
only insignificantly worse than the leading algorithm.

3. FEATURES FOR AUTOMATIC TAG
CLASSIFICATION

In this section we first describe the block processing frame-
work (3.1) and then the block-level features (3.2) that are
used for automatic tag prediction. This feature set sig-
nificantly differs from standard feature sets used in mu-
sic information retrieval and has recently been proposed
for automatic genre classification [5] and for content-based
music similarity estimation [6]. Unfortunately, the pre-
sented block-level are all very high-dimensional, which
is not desirable in the context of classification because of
the high computational costs resulting from the very high-
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Figure 1. Block by block processing of the cent spectrum.

dimensional feature space. Therefore in subsection 3.3 we
propose to compress the block-level audio features via the
well-known Principal Component Analysis (PCA). In sub-
section 3.4 we will then present the standard feature set
extracted by the MARSYAS framework that we compare
the proposed features to.

3.1 The block processing Framework

The idea of processing audio block by block is inspired
by the feature extraction process described in [9, 10, 11].
However, instead of just computing rhythm patterns or
fluctuation patterns from the audio signal one can gener-
alize this approach and define a generic framework. Based
on this framework one can then compute other features
(e.g., the ones presented in section 3.2) to describe the con-
tent of an audio signal. One advantage of block-level fea-
tures over frame-level features like, e.g., MFCCs is that
each block comprises a sequence of several frames, which
allows the extracted features to better capture temporal in-
formation. The basic block processing framework can be
subdivided into two stages: first, the block processing stage
and second, the generalization step.

3.1.1 Block Processing

For block-based audio features the whole spectrum is pro-
cessed in terms of blocks. Each block consists of a fixed
number of spectral frames defined by the block size. Two
successive blocks are related by advancing in time by a
given number of frames specified by the hop size. Depend-
ing on the hop size blocks may overlap, or there can even
be unprocessed frames in between the blocks. Although
the hop size could also vary within a single file to reduce
aliasing effects, here we only consider constant hop sizes.
Figure 1 illustrates the basic process.

A block can be interpreted as a matrix that has W
columns defined by the block width and H rows defined by
the frequency resolution (the number of frequency bins):
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Figure 2. Generalization from block level features to song
feature vectors, with the median as summarization func-
tion.
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3.1.2 Generalization

To come up with a global feature vector per song, the fea-
ture values of all blocks must be combined into a single
representation for the whole song. To combine local block-
level feature values into a model of a song, a summariza-
tion function is applied to each dimension of the feature
vectors. Typical summarization functions are, for example,
the mean, median, certain percentiles, or the variance over
a feature dimension. Interestingly, also the classic Bag of
Frames approach (BOF) [12] can be interpreted as a spe-
cial case within this framework. The block size would in
this case correspond to a single frame only, and a Gaussian
Mixture Model would be used as summarization function.
However, we do not consider distribution models as sum-
marization functions here, as our goal is to define a song
model whose components can be interpreted as vectors in
a vector space. The generalization process is illustrated in
Fig. 2 for the median as summarization function.

In the following, we describe how to compute the fea-
ture values on a single block and give the specific summa-
rization function for each feature. While Fig. 2 depicts
the block level features as vectors, the features described
below will be matrices. This makes no difference to the
generalization step, however, as the summarization func-
tion is applied component by component; the generalized
song-level features will thus also be matrices.

3.2 Block-Level Features
3.2.1 Audio Preprocessing

All block-level features presented in this paper are based
on the same spectral representation: the cent-scaled magni-
tude spectrum. To obtain this, the input signal is downsam-
pled to 22 kHz and transformed to the frequency domain
by applying a Short Time Fourier Transform (STFT) using
a window size of 2048 samples, a hop size of 512 samples
and a Hanning window. Then we compute the magnitude
spectrum | X (f)| thereof and account for the musical na-
ture of the audio signals by mapping the magnitude spec-
trum with linear frequency resolution onto the logarithmic
Cent scale [13] given by Equation (2).

feent = 120010, (fig,/(440 = ( *V2)7570))  (2)

The compressed magnitude spectrum X (k) is then trans-
formed according to Eq.3 to obtain a logarithmic scale.
Altogether, the mapping onto the Cent scale is a fast ap-
proximation of a constant-Q transform, but with constant
window size for all frequency bins.

X(k)ap = 201ogy (X (k)) 3

Finally, to make the obtained spectrum loudness-invariant,
we normalize it by removing the mean computed over a
sliding window from each audio frame as described in [5].
All features presented in the next section are based on the
normalized cent spectrum. Note that the reported param-
eter settings for the audio features in the following sub-
sections were obtained via optimization with respect to a
genre classification task (on a different music collection
that the ones used here).

3.2.2 Spectral Pattern (SP)

To characterize the frequency or timbral content of each
song we take short blocks of the cent spectrum containing
10 frames. A hop size of 5 frames is used. Then we simply
sort each frequency band of the block.
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As summarization function the 0.9 percentile is used.

3.2.3 Delta Spectral Pattern (DSP)

The Delta Spectral Pattern is extracted by computing the
difference between the original cent spectrum and a copy
of the spectrum delayed by 3 frames, to emphasize onsets.
The resulting delta spectrum is rectified so that only pos-
itive values are kept. Then we proceed exactly as for the
Spectral Pattern and sort each frequency band of a block.
A block size of 25 frames and a hop size of 5 frames are
used, and the 0.9 percentile serves as summarization func-
tion. It is important to note that the DSP’s block size dif-
fers from the block size of the SP; both were obtained via
optimization. Consequently, the SP and the DSP capture
information over different time spans.

3.2.4 Variance Delta Spectral Pattern (VDSP)

The feature extraction process of the Variance Delta Spec-
tral Pattern is the same as for the Delta Spectral Pattern
(DSP). The only difference is that the Variance is used as
summarization function over the individual feature dimen-
sions. While the Delta Spectral Pattern (DSP) tries to cap-
ture the strength of onsets, the VDSP should indicate if
the strength of the onsets varies over time or, to be more
precise, over the individual blocks. A hop size of 5 and a
block size of 25 frames are used.



3.2.5 Logarithmic Fluctuation Pattern (LFP)

To represent the rhythmic structure of a song we extract
the Logarithmic Fluctuation Patterns, a modified version of
the Fluctuation Pattern proposed by Pampalk et al. [9]. A
block size of 512 and a hop size of 128 are used. We take
the FFT for each frequency band of the block to extract
the periodicities in each band. We only keep the ampli-
tude modulations up to 600 bpm. The amplitude modula-
tion coefficients are weighted based on the psychoacoustic
model of the fluctuation strength according to the original
approach in [9]. To represent the extracted rhythm pattern
in a more tempo invariant way, we then follow the idea in
[14, 15] and represent periodicity in log scale instead of
linear scale. Finally, we blur the resulting pattern with a
Gaussian filter, but for the frequency dimension only. The
summarization function is the 0.6 percentile.

3.2.6 Correlation Pattern (CP)

To extract the Correlation Pattern the frequency resolution
is first reduced to 52 bands. This was found to be use-
ful by optimization and also reduces the dimensionality of
the resulting pattern. Then we compute the pairwise lin-
ear correlation coefficient (Pearson Correlation) between
each pair of frequency bands, which gives a a symmet-
ric correlation matrix. The basic idea of using band inter-
correlation as a frame-level audio descriptor has already
been proposed by Aylon [16]. Within the block-processing
framework the correlation matrix is computed on block-
level, which is computationally efficient, and a song-level
descriptor is derived via using the 0.5 percentile as summa-
rization function. The Correlation Pattern can capture, for
example, harmonic relations of frequency bands when sus-
tained musical tones are present. Also rhythmic relations
can be reflected by the CP. For example, if a bass drum is
always hit simultaneously with a high-hat this would re-
sult in a strong positive correlation between low and high
frequency bands. Visualizations of the CP show interest-
ing patterns for different types of songs. For example the
presence of a singing voice leads to very specific correla-
tion patterns, which is even more obvious for the CP com-
puted from time-frequency representations with higher fre-
quency resolutions. A block size of 256 frames and a hop
size of 128 frames is used.

3.2.7 Spectral Contrast Pattern (SCP)

The Spectral Contrast [17] is a feature that roughly esti-
mates the “fone-ness” of a spectral frame. This is real-
ized by computing the difference between spectral peaks
and valleys in several sub-bands. As strong spectral peaks
roughly correspond to tonal components and flat spectral
excerpts are often related to noise-like or percussive ele-
ments, the difference between peaks and valleys character-
izes the toneness in each sub-band. In our implementation
the Spectral Contrast is computed from a cent scaled spec-
trum subdivided into 20 frequency bands. For each audio
frame, we compute in each band the difference between the
maximum value and the minimum value of the frequency
bins within the band. This results in 20 Spectral Contrast
values per frame. The values pertaining to an entire block
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Figure 3. Visualization of the proposed block-level pat-
terns for a Hip-Hop song (upper) and a Jazz song (lower).

are then sorted within each frequency band, as already de-
scribed for the SP above. A block size of 40 frames and a
hop size of 20 frames are used. The summarization func-
tion is the 0.1 percentile.

Figure 3 visualizes the proposed set of features for two
different songs, a Hip-Hop and a Jazz song.

3.3 PCA Compression

Unfortunately, the described block-level features are all
high-dimensional. For instance, an LFP has 37 (periodici-
ties) x 98 (audio frequencies) = 3626 dimensions. Feature
spaces of such high dimensionality are a serious problem
in classification tasks, in terms of both overfitting and com-
putational complexity. However, thanks to the vector space
representation of the individual features we can use stan-
dard dimensionality reduction techniques to reduce the size
of the features. A standard Principal Component Analysis
(PCA) [18] is used to compress each block-level feature
separately. The number of principal components that is
suitable to compress a single feature (LFP, SP, DSP, VDSP,
SCP, CP) depends on the underlying data and will always
be a trade-off between quality and compression rate. In
Section 5.3 we will therefore perform a set of tag classifica-
tion experiments to identify an optimal trade-off between
classification quality and compression rate. The next sub-
section briefly introduces the standard audio features that
the presented block-level features are compared to in the
evaluation.

3.4 ‘Standard’ Audio Features

We compare the described block-level feature to a standard
feature set that can easily and efficiently be extracted by
the MARSYAS framework. The features are the Spectral
Centroid, the Rolloff, the Flux and the Mel-Frequency
Cepstral Coefficients (MFCC). Altogether, 16 numbers



are extracted per audio frame. To capture some temporal
information a running mean and standard deviation over a
texture window of M frames is computed. The result in-
termediate features of the running mean computation still
have the same rate as the original feature vectors. To come
up with a single feature vector per song the intermedi-
ate running mean and standard deviation features are once
more summarized by computing mean and standard devi-
ation thereof. The overall result is a single 64-dimensional
feature vector per audio clip. A more detailed description
can be found in [19]. Finally, it is worth mentioning that all
dimensions of both feature sets are always Min-Max nor-
malized before they are used as input to the classification
approach, which will be presented in the next section.

4. CLASSIFICATION APPROACH

As already mentioned we will use the classification method
implemented in the MARSYAS framework to generate the
tag predictions, for both features sets. MARSYAS im-
plements a two stage classification schema (see figure 4)
called “stacked generalization”[3]. In the first stage one
audio feature vector per song serves as the input to a
set of binary classifiers, one for each tag. In our case
the binary classifiers are linear Support Vector Machines
(SVMs) with probabilistic outputs. The probabilistic out-
puts of all binary classifiers of the first stage form the tag
affinity vector (TAV). The TAV can be directly used to gen-
erate tag classifications by mapping the result for each tag
either to 1 (tag present) or O (tag not present); the resulting
vector is called rag binary vector (TBV). In MARSYAS
this is realized via a thresholding approach. The threshold
for each tag is chosen such that the number of testing songs
associated with a given tag is proportional to the frequency
of the tag in the training set. In our evaluation we will de-
note the results obtained via this first classification stage
stage 1 results (S1).

However, instead of just binarizing the obtained tag
affinity vector one can additionally make use of prior
knowledge about tag co-occurrences by feeding the ob-
tained TAV into a second classification stage, which con-
sists once again of one linear Support Vector Machine clas-
sifier per tag, but now with the TAV as input. As in the first
stage the probabilistic output of the second stage classifiers
can be interpreted as tag affinity vector. To distinguish the
probabilistic output of the second stage from the proba-
bilistic output of the first stage, the former is called stacked
tag affinity vector (STAV). The binary classification result,
called stacked tag binary vector (STBV) or stage 2 result
(S2), is then obtained via the same thresholding approach
as described for the first stage.

Although the stacked generalization approach as de-
scribed clearly has some merits, there is one weak point
in this schema, which is the specific thresholding strategy
used by MARSYAS to generate the binary classification
results (setting the threshold such that it leads to a certain
percentage of positive predictions on the test set). It seems
that this is an unconventional way of dealing with the class
imbalance problem, which is one of the major problems
in automatic tag classification. One future research direc-
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Figure 4. Stacked Generalization classification schema,
visualization from [3]

tion will be to investigate more conventional approaches
to deal with the class imbalance problem. In the following
section we will present classification results for both stages
(S1,S2) of stacked generalization tag classification.

5. EXPERIMENTS

In this section, we introduce the two datasets that are used
in our evaluation, discuss the performance measures em-
ployed, and present the results of the experiments. We will
first report on an evaluation of the applicability of PCA
compression to the block-level feature set, and then present
tag classification experiments for the direct comparison of
the block-level and the standard audio feature set.

5.1 Datasets
5.1.1 CAL500

The CALS500 dataset [7] consists of 500 Western popular
songs by 500 different artists. These songs have been anno-
tated by 66 students with predefined semantic concepts that
relate to six basic categories: instruments, vocal charac-
teristic, genres, emotions, preferred listening scenario and
acoustic qualities of a song (e.g. tempo, energy or sound
quality). These concepts were then mapped to a set of 174
tags including positive and negative tags. Based on the
user data binary annotation vectors were derived by ensur-
ing a certain user agreement on the assigned tags. Figure 5
(left) shows the percentage of song that are annotated with
each tag. Tags are sorted according to their annotation fre-
quency. The most frequent tag in this dataset is applied to
88.4% of all songs. Typically, either a tag is used to anno-
tate a majority of all songs or just for a few songs. Figure 5
(b) shows that the 90 most frequently applied tags account
for 89.2% of all annotations.

5.1.2 Magnatagatune

The second dataset in our evaluation is the Magnatagatune
[20] dataset. This huge dataset contains 21642 songs an-
notated with 188 tags. The tags were collected by a music
and sound annotation game, the TagATune* game. The
dataset also contains 30 seconds audio excerpts of all songs
that have been annotated by the players of the game. All

4 http://www.tagatune.org
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Figure 6. Percentage of annotated songs per tag (left) and
percentage of accumulated annotations of the first k most
frequent tags (Magnatagatune).

the tags in the dataset have been verified (i.e. a tag is as-
sociated with an audio clip only if it is generated inde-
pendently by more than 2 players, and only tags that are
associated with more than 50 songs are included). From
the tag distribution (figure 6) one can see that in terms
of binary decisions (tag present / not present), the classi-
fication tasks are even more skewed than on the CAL500
dataset. The most frequently used tag applies to 22.42%
of all songs only. 110 out of the 188 tags are used for less
than 1% of all songs. From figure 6 one can see that the
87 most frequently used tags account for 89.86% of all an-
notations. This dataset is rather difficult to handle because
of its size and the extremely skewed class distributions. To
our knowledge, only Ness et al. [3] have so far presented
results for this dataset.

5.2 Performance Measures

As automatic tag classification is a relatively new research
area the performance measures used for evaluation vary
significantly. Accuracy, precision, recall, f-score, true pos-
itive rate and true negative rate have been used. The only
measure that is used in all evaluations is the f-score. There-
fore, we will use the f-Score (see Eq.5 below) as one per-
formance measure. As a second quality measure we use
the G-mean (8) [21], which is a combination of Sensitiv-
ity (Acc™), also known as true positive rate, and Speci-
ficity (Acc™), also known as true negative rate. As such,
it is a nice and compact measure that has the advantage of

taking the class imbalance into consideration. We believe
that these two quality measures together yield a compact
and also comprehensive evaluation. Both measures can be
computed globally over the entire (global) binary tag clas-
sification matrix, or separately for each tag and then aver-
aged across tags. To differentiate between global and aver-
aged performance measures the averaged per tag measures
are named avg. F-Score and avg. Gmean, respectively. It
is also important to note that we focus on the specific sub-
task of tag classification in this paper and therefore do not
report on performance measures related to tag probabilities
(or tag affinities) like average AUC-ROC.

2 x precision X recall

f-Score = (precision + recall) )
Acc™ = TN/(IN + FP) ©6)
Acct = TP/(TP + EN) %)
G-mean = (Acc™ x Acc*)% 8)

5.3 Evaluation of the PCA Compression

To make the block-level features applicable to the task of
automatic tag classification, we have to reduce their di-
mensionality in order to make the classification computa-
tionally tractable. As already discussed above, we use a
standard Principal Component Analysis (PCA) to achieve
this. However, both the compression rate and the achiev-
able classification quality clearly depend on the number of
principal components used to represent each block level-
feature. In our evaluation we determine the number of
principal components individually for each pattern (LFP,
SP, DSP, SCP, CP, VDSP), based on the total variance cap-
tured by the & most important principal components. For
example, given that we want to keep 80% of the total vari-
ance we compute the PCA for each pattern and then keep
the number of principal components such that at least 80%
of the total variance is accounted for. Thus, the prespeci-
fied variance determines the resulting feature size for each
pattern individually.

To evaluate the PCA compression for different percent-
ages of the total variance the CAL 500 dataset and two fold
cross-validation is used. To compute the principal com-
ponents only the features of the training set were used to
prevent possible overfitting effects. As a consequence the
dimensionality of the compressed feature set differs for the
two cross-validation folds. The same split into two cross-
validation folds were used for all experiments. The evalu-
ation results are summarized in table 1. One can see that
a feature set capturing about 70% to 80% of the total vari-
ance seems optimal in terms of tag classification quality.
Interestingly, also even a extreme reduction of the feature
space to only about 37 dimensions performs comparably
well. With respect to the stage 1 predictions some PCA
compressed feature sets even outperform the original fea-
ture set. Furthermore, the second classification stage yields
an improvement over the first for all evaluated feature sets.
The best classification performance, however, is achieved



by the uncompressed feature set using stacked generaliza-
tion. It is also important to note that the decay in clas-
sification quality with a high number of principal compo-
nents is related to the low number of data points that are
available for the projection: the CAL500 consists of only
500 songs, in a feature space with 9448 dimensions. Al-
together, we can conclude from these experiments that the
proposed PCA compression approach does not diminish
the tag prediction quality too much and is therefore a rea-
sonable approach to reduce the size of the feature space.

5.4 Evaluation of the Feature Set Comparison

To compare the two feature sets we report on the pre-
sented performance measures obtained via 2-fold cross-
validation on two different datasets (CAL500 and Mag-
natagatune). The same cross-validation split was used for
the evaluated feature sets. These results are summarized
in table 2, which gives the global performance measures
computed over the global binary classification matrix, and
the averaged per-tag performance measures. SAF denotes
the standard audio feature set and BLF-PCA denotes the
PCA compressed block-level feature set. BLF-FULL de-
notes the result of the uncompressed block-level feature
set, which we only report for the smaller CAL500 dataset,
because it was computationally not tractable on the larger
Magnatagatune dataset. On the CAL500 dataset the BLF-
PCA feature set consists of the 75 most important princi-
pal components capturing 75% of the total variance. On
the larger Magnatagtune dataset the same variance thresh-
old of 75% was used. For each performance measure the
highest score on each dataset is highlighted in bold face.
Clearly, the BLF-PCA feature set outperforms the standard
feature set (SAF). An interesting finding is that the un-
compressed block-level feature set (BLF-FULL) performs
poorly on the first classification stage and obtains the high-
est scores for the second classification stage. We speculate
that the bad performance in the first classification stage is
related to the high dimensionality of this feature set. An-
other interesting detail is that the achievable gain in quality
due to the improved feature set is in many cases relatively
bigger than the gain from the second classification stage.
Altogether, we can conclude that independent of the over-
all performance measure, either global or averaged per tag,
the compressed block-level feature set compares favorably
to a standard feature set.

6. CONCLUSIONS AND FUTURE WORK

In this paper have compared a set of recently proposed
block-level features to standard audio features with respect
to the task of automatic tag classification. We have shown
that the proposed block-level feature set compares favor-
ably to a standard feature set for the evaluated tag classifi-
cation approach on two different datasets. Since the eval-
uated system with the standard features took the second
rank in the MIREX 2009 tag classification task, we can
conclude that the same system with the block-level fea-
tures instead of the standard features is a state-of-the-art
tag classification system.

Future research directions will include the exploration
of standard techniques to account for the class imbalance
problem of tags (e.g., over- or under-sampling [21]), in-
stead of the rather unconventional threshold approach. An-
other interesting research direction will be to follow the
idea of West et al. [2] and try to use automatically esti-
mated tag and genre affinities for music similarity estima-
tion.
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