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Abstract

‘Hubness’ has recently been identified as a general probféngb dimensional data spaces, man-
ifesting itself in the emergence of objects, so-called hwdsch tend to be among thenearest
neighbors of a large number of data items. As a consequenog ne&rest neighbor relations in
the distance space are asymmetric, that is, oljjéetamongst the nearest neighborsxdfut not
vice versa. The work presented here discusses two clasgastiobds that try to symmetrize near-
est neighbor relations and investigates to what extentdheymitigate the negative effects of hubs.
We evaluate local distance scaling and propose a globantarihich has the advantage of being
easy to approximate for large data sets and of having a pilatigtinterpretation. Both local and
global approaches are shown to be effective especiallyifgr-timensional data sets, which are
affected by high hubness. Both methods lead to a strong aleeref hubness in these data sets,
while at the same time improving properties like classifaratccuracy. We evaluate the methods
on a large number of public machine learning data sets anithestyn data. Finally we present a
real-world application where we are able to achieve sigauifily higher retrieval quality.

Keywords: local and global scaling, shared near neighbors, hubnésssification, curse of
dimensionality, nearest neighbor relation

1. Introduction

In a recent publication in this journal, Radovarfoet al. (2010) describe the so-called ‘hubness’
phenomenon and explore it as a general problem of machine learninghrdimgnsional data
spaces. Hubs are data points which keep appearing unwontedly ofteagest neighbors of a
large number of other data points. This effect is particularly problematic arighgns for similarity
search (for example, similarity-based recommenders), as the same similets @y found over
and over again and other objects are never recommended. The efdptén shown to be a natural
consequence of high dimensionality and as such is yet another aspieetcofse of dimensionality
(Bellman, 1961).

A direct consequence of the presence of hubs is that a large numbeagst neighbor rela-
tions in the distance space are asymmetric, that is, ogjecamongst the nearest neighborsxof
but not vice versa. A hub is by definition the nearest neighbor of a langeber of objects, but
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these objects cannot possibly all be the nearest neighbor of the hub.oli$ervation connects
the hub problem to methods that attempt to symmetrize nearest neighbor relstiomss ‘shared
near neighbors’ (Jarvis and Patrick, 1973) and ‘local scaling’ (Kefanor and Perona, 2005).
While these methods require knowledge of the local neighborhood of deta point, we propose
a global variant that combines the idea of ‘shared near neighborbappes with a transformation
of distances to nearest neighbor ‘probabilities’ to define a concepal®latual Proximity The
approach is unsupervised and transforms an arbitrary distance futztoprobabilistic similarity
(distance) measure. Contrary to the local variants, this new approatitealf to fast approxima-
tion for very large data bases and enables easy combination of multiple dispaces due to its
probabilistic nature.

In experiments with a large number of public machine learning databasesowetisat both
local and global scaling methods lead to: (i) a significant decrease oklsab(ii) an increase &t
nearest neighbor classification accuracy, and (iii) a strengthening péihwise class stability of the
nearest neighbors. To demonstrate the practical relevance, we appjobal scaling algorithm
to a real-world music recommendation system and show that doing so sigthfizaproves the
retrieval quality.

To permit other researchers to reproduce the results of this papegtaliases and the main
evaluation scripts used in this work have been made publicly avattable.

2. Related Work

The starting point for our investigations is a field where the existence of hab been well doc-
umented and established, namely, Music Information Retrieval (MIR). @tlgeccentral notions
in MIR is that of music similarity. Proper modeling of music similarity is at the heart afiyrap-
plications involving the automatic organization and processing of music daga.dasAucouturier
and Pachet (2004), hub songs were defined as songs which eoediag to an audio similarity
function, similar to very many other songs and therefore keep appearimgntedly often in rec-
ommendation lists, preventing other songs from being recommended at dil s&ugs that do not
appear in any recommendation list have been termed ‘orphans’. Similawatisas about false
positives in music recommendation that are not perceptually meaningfubleavemade elsewhere
(Pampalk et al., 2003; Flexer et al., 2010; Karydis et al., 2010). Théeexis of the hub problem
has also been reported for music recommendation based on collabottgmvegfinstead of audio
content analysis (Celma, 2008). Similar effects have been observed ie fDaddington et al.,
1998; Hicklin et al., 2005) and text retrieval (Radovarioei al., 2010), making this phenomenon a
general problem in multimedia retrieval and recommendation.

In the MIR literature, Berenzweig (2007) first suspected a connectébmden the hub problem
and the high dimensionality of the feature space. The hub problem wasseedirect result of
the curse of dimensionality (Bellman, 1961), a term that refers to a numlobiatiénges related to
the high dimensionality of data spaces. Radovaneval. (2010) were able to provide more insight
by linking the hub problem to the property odncentrationFrangois et al., 2007) which occurs as
a natural consequence of high dimensionality. Concentration is the smgpecisaracteristic of all
points in a high dimensional space to be at almost the same distance to all dthgirpthat space.

It is usually measured as a ratio between some measure of spread and dedrituexample, the
ratio between the standard deviation of all distances to an arbitrarymeéepsint and the mean of

1. Databases and scripts can be founiat &p: / / www. of ai . at/ ~domi ni k. schni t zer/ np.
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these distances. If this ratio converges to zero as the dimensionality gofisity, ithe distances are
said to concentrate. For example, in the case of the Euclidean distanceaiitiggdimensionality,
the standard deviation of distances converges to a constant while the eggengtowing. Thus the
ratio converges to zero and the distances are said to concentrate.

The effect of distance concentration has been studied for Euclidemespnd othet’ norms
(Aggarwal et al., 2001; Francois et al., 2007). Radovanheval. (2010) presented the argument that
in the finite case, due to this phenomenon some points are expected to béatheatata-set mean
than other points and are at the same time closer, on average, to all othsr Soich points closer
to the data-set mean have a high probability of being hubs, that is, ofrfapp@anearest neighbor
lists of many other points. Points which are further away from that meanahigh probability of
being ‘orphans’, that is, never appearing in any nearest neighbor lis

Nearest neighbor search is an essential method in many areas of cosqienee, such as pat-
tern recognition, multimedia search, vector compression, computational ssagisticdata mining
(Shakhnarovich et al., 2006) and, of course, information retrievdracommendation. It is a well
defined task: given an objextfind the most similar object in a collection of related objects. In the
case of recommendation, tkenost similar objects are retrieved with< < n (n being the number
of all objects in the data base). Since hubs appear in very many neaigisbor lists, they tend
to render many nearest neighbor relations asymmetric, that is, g isuithe nearest neighbor &f
but the nearest neighbor of the hulis another point (a # x). This is because hubs are nearest
neighbors to very many data points but oklgata points can be nearest neighbors to a hub since
the size of a nearest neighbor list is fixed. This behavior is especialbfgmatic in classification
or clustering ifx andy belong to the same class lmaitoes not, violating what Bennett et al. (1999)
called thepairwise stabilityof clusters. Radovanaoviet al. (2010) coined the tertvad hubsfor
points that show a disagreement of class information for the majority of dattspbey are nearest
neighbors to. Figure 1 illustrates the effect: althowgis, in terms of the distance measure, the
correct answer to the nearest neighbor queryyfat may be beneficial to use a distance measure
that enforces symmetric nearest neighbors. Thus a small distance bdatmeebjects should be
returned only if their nearest neighbors concur.

This links the hub problem to ‘shared near neighbor’ (SNN) appraachbich try to sym-
metrize nearest neighbor relations. The first work to use common nedboeimpformation dates
back to the 1970s. Jarvis and Patrick (1973) proposed a ‘shared@igabor’ similarity measure
to improve the clustering of ‘non-globular’ clusters. As the name suggastshared near neighbor
(SNN) similarity is based on computing the overlap betweerkihearest neighbors of two objects.
Shared near neighbor similarity was also used by Ertdz et al. (2003) to énddbkt representative
items in a set of objects. Pohle et al. (2006) define a related similarity meased bn the rank of
nearest neighbors. They call their method ‘proximity verification’ anditteeenhance audio sim-
ilarity search. Jin et al. (2006) use the reverse nearest neighbd)(Rifation to define a general
measure for outlier detection.

Related to SNN approaches are local scaling methods, which use lodabadigod informa-
tion to rescale distances between data points. The intention is to find spegliitggzarameters for
each point, to be used to tune the pairwise distances in order to accodiffdoent local densities
(scales) of the neighborhoods. Local scaling in this sense was firstlitted as part of a spectral
clustering method by Zelnik-Manor and Perona (2005). It transforiisrary distances using the
distance between objectind itsk’'th nearest neighbor (see Section 3.1 below). In the context of im-
age retrieval, Jegou et al. (2010) describe a related method calledXtaitéissimilarity measure’
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Figure 1: Schematic plot of two classes (black/white filled circles). Eacleciras its nearest
neighbor marked with an arrow: (a) violates feirwise stabilityclustering assumption,
(b) fulfills the assumption. In many classification and retrieval scenatsyguld be
the desired nearest neighbor relation for the data set.

(CDM) and show that it reduces the error rates of the retrieval algordilgmificantly, observing
that “the neighborhood symmetry rate incredseghile at the same timethe percentage of never
seen images decreaseand in addition that the most frequent image is returned 54 times in the
first 10 positions with the CDM, against 1062 times using the standard LIndeta/hile they do

not explicitly make reference to the notion of hubs, their observations itedilka potential of local
distance scaling to mitigate hub-related problems.

3. Scaling Methods

In the previous section we have seen that (i) the emergence of hubstéeasigmmetric nearest
neighbor relations and that (ii) literature already contains hints that loaihgamethods seem to
improve the situation. However a detailed analysis of these facts and a siisteomaection to the
investigations of Radovandyet al. (2010) has not yet been done.

In what follows we review the local scaling methods and introduce a nevablaisiant, which
is also very simple to use. Due to its probabilistic modeling it possesses cenaintagles over the
local variant. Both methods are evaluated in regard to their effects orebsilim Section 4.

All the methods described here assume an underlying distance (digejgeeasure with the
following properties:

Definition 1 Given a non-empty set M with n objects, each elemgrg M is assigned an index

x=1...n. We define a divergence measurédix M — R satisfying the condition of non-negativity
in its distances:
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e non-negativity: dmy,m,) >0, m,,m, e M,

Individual objectarny € M are referenced in the text by their indexThe distance between two
objectsx andy is denoted asl .

3.1 Local Scaling

Local scaling (Zelnik-Manor and Perona, 2005) transforms arbittestgnces to so-calleaffinities
(that is, similarities) according to:

ool
LSidhy) = exp( — 225 ), @

x Oy

whereoy denotes the distance between objeahd itsk'th nearest neighbol.S(dy y) tends to
make neighborhood relations more symmetric by including local distance stattizsth data
points x andy in the scaling. The exponent in Equation 1 can be rewrittemixg%/oxoy =
(dxy/0x)(dxy/0y): only when both parts in this product are small will the locally scaled similarity
LS(dxy) be high. That isx andy will be considered close neighbors only if the distadggis small
relative to both local scales, anday. Jegou et al. (2007) introduce a closely related variant called
non-iterative contextual dissimilarity measure (NICDM). Instead of usiegdistance to th&'th
nearest neighbor to rescale the distances, the average distancekafdheest neighbors is used.
This should return more stable scaling numbers and will therefore be usdidoar evaluations.
The non-iterative contextual dissimilarity measure (NICDM) transformsmigtsaccording to:

dx7y
VA

wherep, denotes the average distance tokinearest neighbors of objectThe iterative version
of this algorithm performs the same transformation multiple times until a stoppinganiiesrmet.
Since these iterations yield only very minor improvements at the cost of ircfeasmputation
time, we used the non-iterative version in our evaluations.

3.2 Global Scaling - Mutual Proximity

In this section we introduce a global scaling method that is based on: (ifdrarnsg a distance
between pointg andy into something that can be interpreted as the probabilityytieathe closest
neighbor tox given the distribution of the distances of all pointsxtan the data base; and (ii)
combining these probabilistic distances framo y andy to x via their joint probability. The resultis
a general unsupervised method to transform arbitrary distance matriecegrioes of probabilistic
mutual proximity(MP). In contrast to local scaling methods, which use the local neiglebadrh
information, MP uses information about all objects—thus the term global gcalin

The general idea of MP is to reinterpret the original distance space stwihabjects sharing
similar nearest neighbors are more closely tied to each other, while two oljibtslissimilar
neighborhoods are repelled from each other. This is done by reieterpithe distance of two
objects as a mutual proximity in terms of their distribution of distances.
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(a) Original space: A tight cluster (b) The affinity of two points in (c) Affinities after applying Mutual
(gray dots in the center) placed in the original space is indicated by Proximity to the distances.

a loose background cluster (black the thickness of the line connecting

dots). two points.

Figure 2: The effect of scaling techniques. Objects with similar nearé@gtiners are tied together
closely, while objects with dissimilar neighbors are repelled.

Figure 2 illustrates the effect of this reinterpretation in an example. Thetefféch can be seen
here is similar to the intuitive repair of nearest neighbor relation as it wassiied in the beginning
in Section 2 (Figure 1).

Figure 2a plots points from two classes on a two dimensional plane. A tighieci{itke gray
dots in the center) is placed in a loose background cluster (black dots)reF2tp connects close
neighbors with lines according to a Delaunay triangulafiofhe thickness of the lines shows the
affinity of two neighboring points according to their Euclidean distance. tfiing plot (Figure 2c)
plots the affinities after applying MP. It can be clearly seen that points fin@toose cluster as well
as points from the tight cluster now both have a high intra-class affinity. dery at the cluster
borders there is weak affinity and strong separation as points from thecliger have different
nearest neighbors than points from the background cluster.

This visible increase in class separation can also be measured in termssdfoelisn rates.
Simple two class k-nearest neighbor classification (tight vs. loose clugtbrhis artificially gen-
erated data yields the following results: In the original space 96.4% of thesteneighbors (at
k = 1) are classified correctly; after applying MP, all (100%) of the neareighbors can be classi-
fied correctly. Fok = 5 the classification rate increases from 95.2% to 98.8%.

3.2.1 MMPUTING MUTUAL PrROXIMITY (MP)

To compute MP, we assume that the distaraigs; » from an objecix to all other objects in our
collection follow a certain probability distribution. For example, Casey et 8082 and Cai et al.
(2007) show that théP distances they compute follow a Gamma distribution. Ferencz et al. (2005)
used the Gamma distribution to mod&ldistances from image regions. Pekalska and Duin (2000)
show in general that based on the central limit theorem and if the featti@sare independent and

2. A Delaunay triangulation ensures that the circumcircle associated withteangle contains no other point in its
interior, that is, no lines cross. This restriction is helpful for visualizatiorppses.
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identically distributed (i.i.d.), theif? distances approximately follow a normal distribution. As real
data is not i.i.d., this can not be assumed. We, however, note that the@cofitlais approximation
increases with increasing intrinsic dimensionality (Frangois et al., 2007).

Under the assumption that all distances in a data set follow a certain distribatiprlistance
dxy can now be reinterpreted as the probabilityydfeing the nearest neighbor ®f given their
distancedyy, and the probability distributioR(X). P(X) is defined by the distances »fo all other
objects in the collection. In fact the probability that a randomly drawn elemeitthave a distance
dyx; > dyy can then be computed:

P(X > dxy) = 1—P(X < dxy) = 1— Fx(0ky).

Fx denotes the cumulative distribution function (cdf) which is assumed for thebditon of
distancesiyj—1. n. This way the probability of an element being a nearest neighbrimdreases
with decreasing distance.

For illustration purposes we assume that in our collection the distancesrarallyadistributed.
Figure 3a shows a schematic plot of the probability density function (pdfywha estimated for
the distances of some objectThe mean distance or expected distance frdffiy) is in the center
of the density function. Objects with a small distancefhat is, objects with high similarity in
the original space) find their distance towards the left of the density fundtiote that the leftmost
possible distance in this sketchdgy = 0.2 Figure 3b plots the probability of being the nearest
neighbor ofx givendyy (the gray filled area). The probability increases the smaller the distance to
X is, or the farther left its distance is on the x-axis of the pdf.

Note that this reinterpretation naturally leads to asymmetric probabilities forea giistance,
as the distance distribution estimatedxanay be different from the one estimated Jox might be
the nearest neighbor gfbut not vice versa. Contrary to the original distances the probabilities now
encode this asymmetric information. This allows for a convenient way to contiien@symmetric
probabilities into a single expression, expressing the probabilik/efing a nearest neighbor pf
and vice versa.

Definition 2 We compute the probability that y is the nearest neighbor of x gie) Rhe pdf

defined by the distances;id; n) and x is the nearest neighbor of y give(YR (the pdf defined
by the distancesyg_1_n), with their joint distribution FX,Y). The resulting probability is called
Mutual Proximity (MP):

MP(dy) = PX > dy 1Y > dy)
= 1—P(X < deyUY < dyy)
=1—[P(X < dyy) +P(Y < dyx) —P(X < dxyNY < dyx)].

Figure 4 illustrates MP for the distancky, and the joint distance distribution of and,
P(X,Y). Each point of the plot refers to an object in the collection and its distanaairits andy.
The shaded area (Il) then defines the probability which is computed b$&tiors 1+11l correspond

3. Strictly speaking, then, the interpretation of this as a normal distributiorcésriect, since distances 0 are not
possible. However, we find the interpretation useful as a metaphor d¢fag¢ binderstand why it makes sense to
combine different views. We will do so in this section.
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(a) The closer other elements arextidhe more to the left is their distance located on
the x-axis of the density function plot. The leftmost possible observatioreidla
is the distancely x = 0.

f(d_ ) X~N(w, o)
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X,i=1..n
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XX dx,y

(b) The shaded area shows the probability thet the nearest neighbor afbased
on the distancelxy and X. The closety is to x (the smallerdy) the higher the
probability.

Figure 3: Schematic plot of the probability density function of a normal digiohuvhich was
estimated from the distancegi—1_n: X -~ N(fix, Ox).

to the probability of being the nearest neighborgflV+l1ll to the probability ofy being a nearest
neighbor ofx and Ill to their joint probability:

I =MP(dyy) =1—[(1 + 1)+ (IV+11)—1T].
It is straightforward to compute MP using the empirical distribution, as illustriat&igure 4.

If the number of observations is large enough, we will tend to model the trderlying distribution
closely. Computing MP for a given distandg, in a collection ofn objects and using the empirical
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dy,i=1 .n

[

d><,i=1 .n

Figure 4: Visualizing the Mutual Proximity for the two pointsy, and their distanced, y, dy .

distribution boils down to simply counting the number of objegtsaving a distance ta andy
which is greater thadyy:

o = L1201 2 )

For distances where the underlying distribution is known, estimating its panarege be
straightforward. For example, the parameters of normal distributitifisG?), or Gamma distri-
butionsr (k, 8) can be estimated quickly with the sample megand variance? of the distances

Oxj—1.n:

N WEEL PN 62—}n(d- f)? ()
X U—x—ni: X,i 5 x—ni; x,i — Hx)"s
R "2 R A2
I_x"‘ kx:%v eng.
Ox Hx

In our experiments we will generally estimate MP directly from the empirical digich. In ad-
dition we will also evaluate MP with different underlying parametric distanceildigions, such as
the Gauss or Gamma distribution (Section 4).

3.2.2 APPROXIMATIONS

The definition of MP (Definition 2) requires estimating a joint distributi(X,Y) for all distance
pairsdyy, which is usually expensive to compute. On the other hand, if indepead®etd be as-
sumed between distributiof¥X) andP(Y), the computation of MP would simplify in accordance
with the product rule:

MPB (dyy) = P(X > dyy) - P(Y > dyx). (3)
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We will show in our experiments that assuming independence in the computéafidl® does not
affect the results in an adverse way (Section 4).

In the base case where MP is computed from the empirical distribution as vedllicdiser vari-
ants presented so far, the computational cost of computing MP growsagicatly with the size
of the data set as all methods require the full distance matrix (that is, albposdsstances) to be
computed. To circumvent this, we propose to estimate the distribution pararetensdomly se-
lecting a small fraction of objects to compute the mean and standard deviatimtasfabs for each
object using only the subset of objects. We denote MP where the pararhater been estimated
by sampling from the collection with M The parametes specifies how many objects have been
randomly sampled. The appropriate sample size is naturally dependent ondéeying distri-
bution. However if a normal distribution may be assumed, a sample size as srSaH a0 will
already yield stable results for MP.

The difference to the original estimation of the parameters in Equation 2 is thaasmall
fraction of distances3 x n) needs to be computed, which, for const8nteduces the complexity
from quaderatic to linear im. This is also more efficient than local scaling, where the actual nearest
neighbors of pointg andy need to be identified. While local scaling methods can of course be used
with fast nearest neighbor search algorithms indexing the high dimensipaeés, the complexity
is far higher than randomly sampling only a constant number of distances.

Experimental verification that these approximations of the original ideat@readid will be
presented in Section 4.

3.2.3 LUNEAR COMBINATION OF DISTANCE MEASURES

Another nice property of MP which can be useful in some contexts is thati&és|0, 1]-normalized
similarities. Thus, the MP transformation can easily be used to linearly combine lmudlifferent
distance measurel andd, for some combination weights; »:

d = 6y MP(dy) + 0 MP(dy).

Similar to a global zero-mean unit-variance normalization, each object’s déstame also stan-
dardized by their respective mean and standard deviation. Thus, noodisteeasure can dominate
the other in this combination. This property is useful in scenarios where muttifidgent dis-
tance measures (describing different aspects of a phenomenonjonkedinearly combined. A
real-world example where this is necessary is presented in Section 5.

4. Evaluation

To investigate the effects of using local neighborhood scaling methodglBnae first evaluate the
methods on 30 public machine learning data sets. Each data set is chaeddvgrihe following
parameters: name/origin, number of classes, size/number of iteamd data dimensionalitgl.
For each data set we evaluate the original distance space and compatteeitdistances that are
generated by the local scaling method and by MP.

After showing the impact of the scaling methods in regard to the hub probleneabdata sets
in the first set of experiments, a second series of experiments investigateffects of the methods
more deeply. Synthetic as well as real data is used.
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4.1 Benchmarks

To quantify the impact of the two methods, a number of properties and qualityuresaare com-
puted for the original and the new distances. The characteristics whidompute for each data
set are:

4.1.1 LEAVE-ONE-OUT k-NEARESTNEIGHBOR CLASSIFICATION ACCURACY (CK)

We report thék-nearest neighbor (kNN) classification accuracy using leave-aherass-validation,
where classification is performed via a majority vote amongkthearest neighbors, with the class
of the nearest neighbor used for breaking ties. We denotke-M accuracy a€X. In the context
of a retrieval problem, higher values would indicate better retrieval qufality.

To test for statistical significance differences in classification accuratwyeen two algorithms,
we use McNemar's test (see Salzberg, 1997 and Dietterich, 1998 fecusdion of using this test
in conjunction with leave-one-out classification). When comparing two élgos A and B, only
classification instances where A and B disagree are being analyze@. ddecifically, it is tested
whether the number of times that A classifies correctly and B does not is sagrilfi different from
the number of times B classifies correctly and A does not.

4.1.2 K-OccURRENCE(NK(x))

Defines the&k-occurrences of objeat that is, the number of timesoccurs in thek nearest neighbor
lists of all other objects in the collection.

4.1.3 HUBNESS(S)

We also compute thhubnesof the distance space of each collection according to Radovanovi
et al. (2010). Hubness is defined as the skewness of the distributicoamiurrencedy:

Positive skewness indicates high hubness, negative values low Bubnes

4. To clarify the cross-validation (CV) process: We first compute th@dig matrix for the entire data setrahstances,
transform this into an MP matrix, and then perform leave-one-out sralg$ation on the data set ofinstances, in
each iteratiori using one of then instancesX;) as a test case to be classified by its nearest neighbors among the
remainingn — 1 instances. It might seem that the ‘test’ examglelays an undue role in this process, having
contributed to the the normalization of the distance matrix before being wsadrew’ test case. However, in a
‘real’ classification scenario, where we would have a fixed training8et (consisting ofn— 1 instances) and are
presented with a new objegt to classify (not contained iXx"~1), we would also first have to compute the full
distance matrix oveX"~1U{x;} in order to then be able to compute MP over this matrix. (That is becausesktin
information about all distances to and frogn)

The result of this would be exactly the MP matrix we compute beforehandrioross-validation process—and
it is the exact same matrix for all other ‘test’ instances frEmThus, it is legitimate to compute this once and for
all before the CV. On the other hand, the above means that using MPéalaclassification scenario is expensive,
because before being able to classify a new instance, first a completecgisnd MP matrix have to be computed.
What makes this process feasible in practice is the MP approximatigndestribed in Section 3.2.2
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4.1.4 GOODMAN-KRUSKAL INDEX (Igk)

The Goodman-Kruskal Index (Glunter and Bunke, 2003) is a clustqriatity measure that relates
the number otoncordant(Qc) anddiscordant(Qq) tuples € j, dk) of a distance matrix.

e A tuple is concordant if its itemg j are from the same class, iterksl are from different
classes and; j < dy.

e A tuple is discordant if its itemg j are from the same class, iterksl are from different
classes and; j > dy.

e Atuple is not counted if it is neither concordant nor discordant, that &, if= dy.

The Goodman-Kruskal Indexdk) is defined as:

_ Qx—Q
Qc+Qud

lek

lck is bounded to the interval-1,1], and the highefgk, the more concordant and fewer dis-
cordant quadruples are present in the data set. Thus a large indexnditates a good clustering
(in terms ofpairwise stability—see Section 2).

Other indices to compare clustering algorithms like the classic Dunn’s Indeawes-Bouldin
Index (Bezdek and Pal, 1998) cannot be used here as their values dibow a comparison across
different distance measures.

4.1.5 INTRINSIC DIMENSIONALITY (dmie)

To further characterize each data set we compute an estimate of the intimegiasibnality of
the feature spaces. Whereas the embedding dimension is the actual ndrdbeemsions of a
feature space, the intrinsic dimension is the—often much smaller—number ofsiotnemecessary
to represent a data set without loss of information. It has also been dé&@ed that hubness
depends on the intrinsic rather than embedding dimensionality (Radogaetasdi., 2010). We use
the maximum likelihood estimator proposed by Levina and Bickel (2005), whiahalso used by
Radovano\i et al. (2010) to characterize the data sets.

4.1.6 FERCENTAGE OF SYMMETRIC NEIGHBORHOOD RELATIONS

We call a nearest neighbor relation between two potrgady ‘symmetric’ if the following holds:

objectx is a nearest neighbor gfif and only if y is also the nearest neighborxfAs both exam-
ined methods aim at symmetrizing neighborhood relations, we report thenpege of symmetric
relations at different neighborhood siZes

4.2 Public Machine Learning Data Sets

We evaluate the proposed method by applying it to 30 different public matdanging data sets.
The data sets include problems from the general machine learning fieltheabid-medical, image,
text and music retrieval domains. We use the following data sets:
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e The UCI Machine Learning RepositoryJCl, see Frank and Asuncion, 2010) data sets:
arcene gisette mfeat-pixels/karhunen/factqrdexter mini-newsgroupsdorothea reuters-
transcribed®

e The Kent Ridge bio-medical data sekR): amlall, lungcancerandovarian-61902%

e The LibSVM data setslL{bSVM see Chang and Lin, 2001gustralian diabetes german
numbersliver-disorders breast-cancerduke (train) heart sonar, colon-canceyfourclass
ionospheresplice’

e The Music Information Retrieval Evaluation eXchange (MIREX) data $diek, see Downie,
2008): ballroomandismir20048

e Two music artist web pages and tweets data 8B §ee Schedl|, 2010k lka-twitterand
c224a-web

For the general machine learning data sets from the statistical or biologicelids no feature
extraction is necessary. The feature vectors can be downloadetydirem the respective repos-
itories. These general machine learning data sets use the standard &udistance (denoted as
(?) as similarity measure.

The text retrieval data setsre(ters-transcribed c224a-web movie-reviews dexter
mini-newsgroupsclka-twitte) need to be preprocessed before evaluating tHeifo this end we
employ stop-word removal and stemming. They are transformed into thefbagrds representa-
tion, and standartf -id f (term frequency inverse document frequency) weights are computed (see
for example Baeza-Yates and Ribeiro-Neto, 1999). The word veatersceimalized to the average
document length. Individual document vectors are compared with theecdstance (denoted as
co9.

For the image retrieval data sefel) normalized color histograms are computed as features.
They show reasonable classification performance despite their simplic®hagslle et al. (1999)
show. The three 64-dimensional color histograms are concatenated imgle\&ctor and com-
pared using the Euclidean distanég)(

To extract the features for the two music information retrieval data iset&2004 ballroom) we
use a standard algorithm from Mandel and Ellis (2005) which computes-kegluency Cepstrum
Coefficients (Logan, 2000) and models each object as a multivariate hdistrdbution over these.
Objects (models) are compared using the symmetrized Kullback-Leiblergdivee (denoted as
skl).

4.3 Results

In the following experiments we compute all previously introduced benchmankbers for the
original data and the distance spaces after applying the scaling meth@BNNMP). We use MP
as defined in Section 3.2 and model the distance distributions with the empiricadudion.

. The UCI Repository can be foundHdtt p: / / ar chi ve.ics. uci.edu/m/.

. The Kent Ridge data sets can be fountitatp: / / dat am i 2r. a- st ar. edu. sg/ dat aset s/ krbd/ .

. LibSVM can be found dit t p: / / www. csi e. ntu. edu. tw ~cj lin/libsvntool s/ datasets/.

. The MIREX data sets can be founchat p: / / www. musi c-ir. org/ mrex.

. These data sets can be foundtdtp: / / www. cp. j ku. at / peopl e/ schedl / dat aset s. htm .

. Setclka-twitterequalsc3ka-twitterfrom CP, omitting artists classified as ‘rock’ to balance the data.

O W~ O,
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Tables 1 and 2 show the results of the evaluations conducted on the 3@ugtevntroduced
public data sets. The collections have very diverse properties. Thembections likefourclass
or liver-disorderswith very low dimensionalityd = 2 andd = 6), as well as data sets with very
high embedding dimensionality, suchd@wsothea(d = 100000) orclka-twitter(d = 49820). Re-
lated to that, colummnye lists the intrinsic dimensionality according to the maximum likelihood
estimator. Using the intrinsic dimensionality estimate we can see that there aretdatdnere the
data is originally represented using high-dimensional feature vectoreughtthe data’s intrinsic
dimensionality is quite low. For example tbgarian_61902ata set has an embedding dimension
of d = 15154 but its estimated intrinsic dimension is odfye = 9.

The evaluation results in Tables 1 and 2 are sorted by the huBfessf the original distance
space (printed in bold). In subsequent plots individual collectionsedezenced by their numbers
as given in Tables 1 and 2. The colun@is’}/C*=5 show thek-nearest neighbor classification rates
of the collections. The classification rates with the original distances, thedoakng (NICDM)
and the global scaling (MP) are documented. For convenience the celarahows the difference
in classification accuracy, in terms of absolute percentage points, betheamiginal distances
and NICDM/MP. All improvements compared to the original distances are printeold. Statis-
tically significant differences are marked with an asterisk (McNemar's dést; 1, a = .05 error
probability).

Looking at the tables, a first observation is that very high-dimensional gkts (in terms of
their intrinsic as well as their embedding dimensionality) also tend to have higrebabThis is in
agreement with the results of Radovartoei al. (2010) and the theory that hubness is a consequence
of high dimensionality.

By looking at the classification rates (colun@ls™ andC*=5) it can also clearly be observed that
the higher the hubness and intrinsic dimensionality, the more beneficial, in témtassification
accuracy, NICDM and MP. For data sets with high hubness (in the collsctiemused, a value
above 1.4 seems to be a limit) the increase in classification rates is notab&=fpthe accuracy
gain ranges from rather moderate 1 to up te&percentage points, and in the caseIia-twitterit
is 15.9 percentage points for NICDM and 17.1 percentage points for MEE® the trend is even
clearer. Whereas only three changes in accuracy (relative to thearifigtances) are significant
for data sets with low hubnesS‘¢® < 1.4, data sets 1-17), 34 changes in accuracy are significant
for data sets with high hubnesS‘¢® > 1.4, data sets 18-30). There is no statistically significant
negative change in terms of classification accuracies.

Figures 5 and 6 (left hand sides) present these results in bar plote Wigey-axis shows the
index of the data sets (ordered according to hubness as in Tables } and the bars show the
increase or decrease of classification rates. The bar plots also difeaii®w MP compares to
NICDM in terms of classification accuracy fér= 1,5. Generally speaking, results for MP and
NICDM are very comparable. As fdc= 1, MP and NICDM perform equally well and there is
no statistically significant difference between MP and NICDM (McNemass tf = 1, a = .05
error probability). Based on the same statistical testing procedure, resstMBCDM andk =5 are
significantly better than for MP for data sets 18, 20, 22 (marked with asseinskigure 6). The
general tendency of both MP and NICDM is comparable in the sense thatéfihan improvement
compared to the original distances, it can be seen for both MP and NICDM.

Another observation from the results listed in Tables 1 and 2 is that both MI@Bd MP
reduce the hubness of the distance space for all data sets to relativelgli®s. The hubnesk=5
decreases from an average value of 2.5 (original) to 0.29 (MP) and(RI&DM), indicating a

2884



LoCcAL AND GLOBAL SCALING REDUCE HUBS IN SPACE

; k1t ks T ges
Name/Src. Cls. n d dpe Dist. C %-pts C %-pts lgk
fourclass (sc) 2 862 2 22 100% 100% 0.15 0.22
1. LibSVM NICDM  100% 0 100% 0 0.06 0.21
MP 100% 0 100% 0 0.04 0.23
arcene 2 100 10000 399¢2 82.0% 75.0% 0.25 0.07
2.UClI NICDM 81.0% -1.0 77.0% 2.0 -0.27 0.06
MP 80.0% -2.0 81.0% 6.0 0.15 0.10
liver-disorders (sc) 2 345 6 6 (2 62.6% 60.6% 0.39 0.00
3. UClI NICDM 63.2% 0.6 65.8% *5.2 -0.04 0.03
MP 62.9% 0.3 655% *49 -0.03 0.01
australian 2 690 14 372 65.5% 68.8% 0.44 0.13
4, LibSVM NICDM 65.7% 0.2 69.4% 0.6 -0.09 0.14
MP 65.4% -0.1 684% -0.4 0.08 0.14
diabetes (sc) 2 768 8 6.2 70.6% 74.1% 0.49 0.20
5. UCI NICDM 69.8% -0.8 74.1% 0 0.04 0.15
MP 70.3% -0.3 732% -09 -0.02 0.19
heart (sc) 2 270 13 7 (2 75.6% 80.0% 0.50 0.35
6. LibSVM NICDM 759% 0.3 79.3% -0.7 -0.00 0.27
MP 75.6% 0 80.4% 0.4 0.08 0.39
ovarian-61902 2 253 15154 10/2 95.3% 93.7% 0.66 0.20
7.KR NICDM 95.7% 0.4 933% -04 -0.10 0.19
MP 941% -1.2 941% 0.4 -0.28 0.19
breast-cancer (sc) 2 683 10 52 95.6% 97.4% 0.71 0.89
8. LibSVM NICDM 95.8% 0.2 97.1% -0.3 0.19 042
MP 96.0% 04 97.1% -0.3 0.22 091
mfeat-factors 10 2000 216 702 95.0% 94.7% 0.79 0.71
9. UCI NICDM 94.8% -0.2 94.7% 0 0.15 0.76
MP 945% -0.5 949% 0.2 0.01 0.77
colon-cancer 2 62 2000 1142 72.6% 77.4% 0.81 0.19
10. LibSVM NICDM 69.4% -3.2 823% 4.9 0.08 0.18
MP 67.7% -49 823% 49 -0.11 0.19
ger.num (sc) 2 1000 24 82 67.5% 71.7% 0.81 0.07
11.LibSVM NICDM 66.8% -0.7 72.0% 0.3 0.32 0.03
MP 67.6% 0.1 71.4% -0.3 0.11 0.07
amlall 2 72 7129 32 ¢2 91.7% 93.1% 0.83 0.31
12.KR NICDM 93.1% 14 972% 4.1 056 0.33
MP 88.9% -28 91.7% -1.4 -0.01 0.34
mfeat-karhunen 10 2000 64 15¢2 97.4% 97.4% 0.84 0.76
13.UCI NICDM 97.2% -0.2 97.6% 0.2 0.27 0.74
MP 97.0% -04 975% 0.1 0.08 0.79
lungcancer 2 181 12533  60¢? 98.9% 100% 1.07 0.56
14. KR NICDM 99.4% 05 989% -1.1 0.31 0.50
MP 98.3% -0.6 97.8% -2.2 0.01 0.56
c224a-web 14 224 1244 41 cos 86.2% 89.3% 1.09 0.79
15.CP NICDM 87.9% 1.7 924% *3.1 0.42 0.89
MP 88.4% 2.2 924% 3.1 0.22 0.89

Table 1: Evaluation results ordered by ascending hubr&ss)(of the original distance space.

This table reports data sets with small hubness. Each evaluated dakaset/Gr} is
described by its number of classé€3g), its size ), its extrinsic ¢I) and intrinsic {nie)
data dimension and the distance measure UBist) ( ColumnsCK report the classification
accuracies at a givdg the respective adjacent coluntft the difference in classification
accuracy between the original distances and NICDM/MP (in percentaigésp column
ek the Goodman-Kruskal Index. See Section 4.1 for an explanation of tiadudl
benchmarks.
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; k1 H- ks H- =5
Name/Src. Cls. n d dye Dist. C Yo-pts C Y%o-pts lgk
mfeat-pixels 10 2000 240 12/¢2 97.6% 97.7% 1.25 0.75
16.UCI NICDM 97.2% -04 978% 0.1 0.28 0.75
MP 97.2% -04 975% -0.2 0.13 0.79
duke (train) 2 38 7129 16 (2 73.7% 68.4% 1.37 0.02
17.UCI NICDM 81.6% 7.9 68.4% 0 0.43 0.06
MP 76.3% 2.6 68.4% 0 0.21 0.03
corel1000 10 1000 192 92 70.7% 65.2% 1.45 0.33
18. Corel NICDM 72.9% *2.2 72.0% *6.8 0.39 0.47
MP 71.6% 09 703% *5.1 031 0.50
sonar (sc) 2 208 60 11¢? 87.5% 82.2% 1.54 0.07
19. UCI NICDM 87.0% -05 87.0% 4.8 047 0.08
MP 87.5% 0 84.1% 19 032 0.08
ionosphere (sc) 2 351 34 137 86.9% 85.5% 155 0.31
20.UClI NICDM 92.3% *5.4 94.3% *8.8 0.28 0.07
MP 91.7% *4.8 89.7% *4.2 050 0.27
reuters-transcribed 10 201 2730 70 cos 44.3% 49.3% 1.61 0.38
21.UClI NICDM 453% 1.0 527% 34 063 0.32
MP 423% -2.0 552% *5.9 0.18 0.43
ballroom 8 698 820 12 skl 54.3% 48.1% 298 0.15
22. Mirex NICDM 572% 29 516% *3.5 1.09 0.20
MP 56.6% 23 543% *6.2 030 0.18
ismir2004 6 729 820 25 ski 80.4% 74.1% 3.20 0.37
23. Mirex NICDM 83.8% *3.4 79.0% *49 0.77 0.21
MP 83.4% *3.0 77.0% *2.9 046 0.45
movie-reviews 2 2000 10382 28 cos 71.1% 75.7% 4,07 0.05
24.PaBo NICDM 72.0% 09 76.0% 0.3 1.22 0.07
MP 71.8% 0.7 767% 10 0.36 0.07
dexter 2 300 20000 161 cos 80.3% 80.3% 422 0.10
25.UClI NICDM 84.3% 4.0 86.0% *5.7 202 0.13
MP 83.0% 2.7 90.0% *9.7 0.58 0.13
gisette 2 6000 5000 149¢2 96.0% 96.3% 448 0.16
26.UCI NICDM 97.2% *1.2 98.1% *1.8 0.78 0.20
MP 97.4% *1.4 97.9% *1.6 0.34 0.20
splice (sc) 2 1000 60 272 69.6% 69.4% 455 0.07
27.LibSVM NICDM 733% *3.7 79.3% *9.9 151 0.11
MP 724% 28 77.2% *7.8 0.48 0.10
mini-newsgroups 20 2000 8811 188 cos 64.4% 65.6% 5.14 0.47
28.UCI NICDM 67.2% *2.8 685% *29 132 052
MP 67.7% *3.3 68.4% *2.8 0.60 0.57
dorothea 2 800 100000 201¢2 90.6% 90.2% 1291 0.21
29.UCI NICDM 922% 16 93.0% *2.8 11.72 0.21
MP 915% 0.9 93.1% *29 166 0.20
clka-twitter 17 969 49820 46 cos 31.9% 26.6% 14.63 0.08
30.CP NICDM 47.8% *15.9 53.0% *26.4 294 0.33
MP 49.0% *17.1 50.8% *24.2 1.79 0.16

Table 2: Evaluation results ordered by ascending hubr@ss)(of the original distance space.
This table reports data sets with large hubness. Each evaluated daaset/Erg is
described by its number of class€3g), its size (), its extrinsic ¢l) and intrinsic fnie)
data dimension and the distance measure uBist) ( ColumnsCX report the classification
accuracies at a gively the respective adjacent colunmft the difference in classification
accuracy between the original distances and NICDM/MP (in percentaigésp column
Ik the Goodman-Kruskal Index. See Section 4.1 for an explanation of tiadnodl
benchmarks.
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Figure 7: Percentage of symmetric neighborhood relatioks=ab (above) andk = 10% (below)
of the respective collection size.

well balanced distribution of nearest neighbors. The impact of MP a@DM on the hubness per
data set is plotted in Figures 5 and 6 (right hand sides). It can be seadrothaviP and NICDM
lead to lower hubness (measured &71°) compared to the original distances. The effect is more
pronounced for data sets having large hubness values accordingoioginel distances?

11. A notable exception is data set 29 (‘dorothea’) where the reductibobiness is not so pronounced. This may be
due to the extremely unbalanced distribution of its two classes (9:1).
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More positive effects in the distances can also be seen in the increaseanirdant (see Sec-
tion 4 for the definition) distance quadruples indicated by higher Goodmaskidl index values
(Ick)- This index improves or remains unchanged for 27 out of 30 data sets gage of using MP.
The effect is not so clear for NICDM, which improves the index or leaveschanged for only 17
out of 30 data sets. The effect of NICDM odgk is especially unclear for data with low hubness
(data sets 1-17).

Finally we also checked whether both MP and NICDM are able to raise tieeqtage of sym-
metric neighborhood relations. Results foe= 5 andk set to 10% of the collection size (denoted
by k = 10%) are shown in Figure 7. As can be seen, the symmetry in the neaigigtars for all
data sets increases with both MP and NICDM. For NICDM there are tws¢daéa set 13 and 16)
where the neighborhood symmetry does not increase. The averagafage of symmetric neigh-
borhoods across all data sets ket 5 is 46% for the original distances, 69% for MP, and 70.8% for
NICDM. The numbers fok = 10% are 53% (original), 73.7% (MP), and 71.1% (NICDM).

4.4 Approximations

The general definition of MP (Definition 2, Section 3.2.1) allows for moreigauses if the under-
lying distribution of distances is known. All experiments conducted up until nge MP with the
all-purpose empirical distribution. This section evaluates the use of diffelistributions in MP.
Specifically, we will compare a Gaussian and a Gamma modeling to using the ehghistcau-
tion. For the two selected distributions, parameter estimation is straightforaegdsgection 3.2.1).
In case of the Gaussian, we will compute MP as it was defined. In ouriexgrs this configura-
tion will be denoted and referenced with ‘MP (Gauss)’. As this variantlies computing a joint
distribution in every step and this is expensive to calculate, there is no tageato the original
MP. Where things get interesting from a computational point of view, is usiRgand assuming
independence (MPsee Equation 3). In this case computing the joint distribution can be omitted.
In our experiments we use the Gamma (denoted with, ‘MP (i.Gamma)’) and Giderssted with
‘MP (i.Gauss)’) distribution with MP assuming independence.

Figure 8 plots the result of this experiment in the same way as we have dore netrious
section. We compare the decrease/increase of classification accamatiesbness &= 5. Look-
ing at the results, we can see that all methods seem to perform equally inofenredsicing hubness
and increasing classification accuracies. More importantly, we notice #hairtiple variant (‘MP
(i.Gauss)’), which assumes a Gaussian distribution of distances anceimdbce, performs simi-
larly to all other variants.

This leads to the next experiment where we compare MP to a very simplexapption MPs
(see Section 3.2.2). As discussed in Section 3.2.2, assuming a Gaussamma@istance distri-
bution requires only a small sample si&-{ 30) for a good estimate of the distribution parameters.
Paired with the already evaluated simplification of MP assuming independdmse eomputing
the joint probability, MP is ready to be used instantly with any data collection.r&igshows the
results of a comparison of MRo MP. The classification accuracies are averages over ten approx-
imations, that is, based on using ten times thirty randomly drawn data pointsdoy éata set.
As can be seen, accuracy results are very comparable. We rec¢brdedstatistically significantly
different results for MR using the approximative Gamma and Gauss variant (data sets 2, 10, 21,
McNemar's testdf = 1, a = .05 error probability). We also notice that with a sample siz86f30
the decrease in hubness is not as pronounced fey ddRor MP.
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4.5 Further Evaluations and Discussion

The previous experimental results suggest that the considered distaiicey methods work well
as they tend to reduce hubness and improve the classification/retrieush@ccin the following
three experiments we examine the scaling methods on artificial data as well dateein order to
investigate the following three questions:

1. Does NICDM/MP work by effectively reducing the intrinsic dimensionalityhef data?
2. What is the impact of NICDM/MP on hubs and orphans?
3. Is the changing role of hubs responsible for improved classificaticuracy?

The artificial data used in the experiments is generated by randomly samplingighelimensional
data vectorsr(= 1000) in the hypercubf®, 1]¢ from the standard uniform distribution. We use the
Euclidean distance function and MP with the empirical distribution in all expertisnen

4.5.1 DMENSIONALITY

As we have already shown that hubs tend to occur in high dimensionassghe first experiment
examines the consequential question if the scaling methods actually redurcteiitséc dimension-
ality of the data. In order to test this hypothesis, the following simple experimastperformed:
We increase the dimensions of artificial data (generated as describeg) &boreate high hubness,
and measure the intrinsic dimensionality of the data spaces before andcafteg she distances
with NICDM/MP.

We start with a low data dimensionalitg & 5) and increase the dimensionality to a maximum
of d = 50. In each iteration we measure the hubness of the data and its intrinsic @inzting
The maximum likelihood estimator proposed by Levina and Bickel (2005) id tesestimate the
intrinsic dimensionality of the generated vector spaces.

In Figure 10a we can see that a vector space dimension as low as 3¢ &adslto a distance
space with very high hubnesS<® > 2). We can further see that NICDM/MP are able to reduce
the hubness of the data spaces as expected. Figure 10b shows theethgdsuasic dimensionality
of the original data. As anticipated it increases with its embedding dimensionHlityever, to
measure the intrinsic dimensionality of the data spaces created by MP andI@&Efirst have to
map their distance space to a vector space. We perform this vector mappiggnultidimensional
scaling (MDS), doubling the target dimensionality to ensure a good mapping.

Figure 11 shows the results. For verification purposes, we (i) also maprigieal distance
space with MDS and (ii) re-compute the hubness for the new data spagess(Ela). Figure 11b
finally compares the measured intrinsic dimensionality. We can clearly seedithemMP or
NICDM decreases the intrinsic dimensionality notably. In none of the expetgrdpes the esti-
mated intrinsic dimensionality of the new distance space fall below the one redasuhe original
space.

4.5.2 IMPACT ON HUBS/ORPHANS

In the second experiment, we evaluate the question of what exactly rejapire hub and anti-hub
(orphan) objects. Do hubs, after scaling the distances, still remain butiess severely’ so), or do
they stop being hubs altogether? To look into this, we repeatedly genetdam, artificial, and
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Figure 10: Increasing the dimensionality of artificially generated randden déeasuring (a) hub-
ness of the original and scaled data, (b) the intrinsic dimensionality of thimalridata.
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Figure 11: A vector space mapping of the distance spaces generatedrie Figallows to compare
the intrinsic dimensionality of the original, MP, and NICDM data-spaces. Noedese
of the intrinsic data dimensionality by using NICDM/MP can be observed.

high-dimensionalq = 50) data sample to (i) track hub and anti-hub objects and (ii) compute their
k-occurrence N¥) in the original space and in the distance spaces created after applyirmiP
NICDM. We define ‘hub’ objects as objects witlkaccurrence in the nearest neighbors greater than
5k and ‘orphan’ objects as havingkeoccurrence of zerdk(= 5). The experiment is repeated 100
times and for each iteration the observed mean k-occurrence of hutehsris plotted in Figure 12.

Looking at the figure we can confirm that for the two studied cases (bwdbgns) a weakening
of the effects can be observed: after scaling the distances, hubg docow as often as nearest
neighbors any more, while orphans re-appear in some nearest-nelgidoThek-occurrence of
all other objects stays constant. Another observation is that in no insthtieeexperiment do hubs
become orphans or orphans become hubs, as the meagtiedever cross for the two classes.
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Figure 12: The k-occurrenc®lf=>) of hub and orphan data points before and after applying any of
the scaling methods (NICDM, MP). Orphans re-appear in the neargs$thuoe lists and
the strength of hubs is reduced.

4.5.3 IMPACT OFHUBS/ORPHANS

In the final experiment we examine the increase in classification accuvegielserved previously
when using NICDM or MP on the high dimensional machine learning data setteafn where
the increase in classification accuracy came from, we distinguish betwésn dnphans, and all
other objects. For each of the three classes we compute the so-calledssa@N“=>) as defined

by Radovanow et al. (2010). Badness of an objecis the number of its occurrences as nearest
neighbor at a givek where it appears with a different (that is, ‘bad’) class label. As thigarpent
makes only sense in collections with more than one class showing high huimeesslect machine
learning data sets with high hubness35f° > 2 from the 30 previously used databases. Table 3
documents the results of this experiment on the nine selected data sets.

For each collection the table shows the absolute number of hubs, orpimaal] other objects
in the original data space. We then compute their badness before (cdingt)sand after applying
MP and NICDM. It can be clearly seen that indeed in each of the testedtiofis the badness of
hubs decreases noticeably. In fact, on averfalyé=> decreases more than 10 percentage points
from 46.3% in the original space to 35.6% (NICDM) and 35.3% (MP). Anothsble effect is
that orphans re-appear in the nearest neighbor lists (see previpesnegnt, Figure 12) with an
average badness of 36.5% (NICDM) and 35.1% (MP). The measudsgbbs of orphan objects is
comparable to the values reported for hubs, but is still notably higher tleanutmbers computed
for the rest of the objects (‘Other’). The badness of all other objentistto stay the same: In three
cases the badness increases slightly, in all other cases a slight ddnrbadness can be observed.
On average, badness decreases from 29.3% to 28.4% for both md#®dsd NICDM).

4.6 Summary of Results

Our main result is that both global (MP) and local (NICDM) scaling showy \eeneficial effects
concerning hubness on data sets that exhibit high hubness in the odgteaice space. Both
methods are able to decrease the hubness, raise classification acudanyprove other indicators
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Hubs, BN=5 (%) Orphans, BN=5 (%) Other, BN©® (%)

Data Set # Orig. NICDM MP| # Orig. NICDM MP # Orig. NICDM MP

clka-twitter 13 835 54.0 55.7540 / 59.3 59.2 416 46.2 47.9 50.1
dorothea 19 10.2 9.7 6.8 730 / 10.4 10.6 51 8.6 7.1 4.9
mini-newsgroups 38 67.2 62.2 60,7304 / 456  43.5 1658 42.2 415 416
splice (sc) 28 36.5 29.3 28.6289 / 31.8 30.9 683 35.0 315 31.7
gisette 49 189 10.9 9.8 635 / 7.9 8.1| 5316 4.7 4.0 3.9
dexter 11 443 27.9 28.4 80 / 335 30.5 209 18.2 18.1 17.7
movie-reviews 50 375 35.4 36,2293 / 36.0 36.3 1657 315 32.0 32.3
ismir2004 10 50.3 27.8 27.3120 / 44.2 38.0 599 257 244 25.0
ballroom 12 67.9 62.8 63.8148 / 59.5 58.60 538 51.6 49.0 483
Average (%-points):  46.3 356  35|3 / 365  35.1| 293 284 284

Table 3: Relative badnesBI¢=5) of hub objects {k=> > 5k), orphan objectsN¥=> = 0), and all
other objects. Data sets wigf=> > 2.

like percentage of concordant distance quadruples or symmetric neligidubrelations. In case of
MP, its approximation MEis able to perform at equal level with substantially less computational
cost O(n), as opposed t®(n?) for both MP and local scaling). For data sets exhibiting low
hubness in the original distance space, improvements are much smallerexistamt, but there is
no degradation of performance.

We have also shown that while MP and NICDM reduce hubness, whicls tendccur as a
consequence of high dimensional data, both methods do not decreasgitisic dimensionality
of the distance spaces (at least for the type of data and measure ofi¢rdimensionality used in
our experiments). By enforcing symmetry in the neighborhood of objecth,hethods are able to
naturally reduce the occurrence of hubs in nearest neighbor listsestitegly, at the same time as
the occurrence of hubs in nearest neighbor lists decreases, halbesatheir badness in terms of
classification accuracy.

5. Mutual Proximity and Content-Based Music Similarity

This section presents an application where we can use Mutual Proximitypitexamation MR
(Section 3.2.2) and a linear combination of multiple similarity measures (Section @2n3)rove

the retrieval quality of the similarity algorithm significantly. We chose to includegk@&nple as it
demonstrates how MPwith all its aspects introduced above can improve the quality of a real world
application: the FM4 Soundpark.

The FM4 Soundpark is a web platform run by the Austrian public radio st&thdd, a sub-
sidiary of the Austrian Broadcasting Corporation (OR¥Yhe FM4 Soundpark was launched in
2001 and has gained significant public attention since then. Registeré¢si@atisipload and present
their music free of charge. After a short editorial review period, neeksare published on the
front-page of the website. Older tracks remain accessible in the ordegioptiblication date and
in a large alphabetical list. Visitors of the website can listen to and downloadeaihttsic at no
cost. The FM4 Soundpark attracts a large and lively community interestedaindipoming music,

12. FM4 Soundpark can be foundhat p: // f m4. or f . at/ soundpar k.
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Figure 13: The FM4 Soundpark music player web interface.

and the radio station FM4 also picks out selected artists and plays themestriatradio. At the
time of writing, there are more than 11 000 tracks by about 5000 artists listed antline catalog.

Whereas chronological publishing is suitable to promote new releases,reldases tend to
disappear from the users’ attention. In the case of the FM4 Soundpatkath the effect of users
mostly listening to music that is advertised on the front-page, and thereforagnilss full musical
bandwidth. To allow access to the full database regardless of publicatierofla song, we imple-
mented a recommendation system using a content-based music similarity measugagser and
Flexer, 2009 for a more detailed discussion of the system).

The user interface to the music recommender has been implemented as anFfastbbased
MP3 player with integrated visualization of the five songs most similar to the anertly playing.
This web player can be launched from within an artist's web page on thedpatk website by
clicking on one of the artist's songs. Additionally to offering the usual plawyterface (start, stop,
skipping forward/backward) it shows songs similar to the currently plagimgin a text list and
in a graph-based visualization (see Figure 13). The similar songs asveetiby using an audio
similarity function.

The graph visualization displays an incrementally constructed nearesboeigraph (number
of nearest neighbors = 5).

5.1 Similarity

The distance function used in the Soundpark to quantify music similarity wasioled by Pampalk
(2006). To compute a similarity value between two music traxkg (the method linearly combines
rhythmic ;) and musical timbred;) similarities into a single general music similarigy) value. To
combine the different similarities, they are normalized to zero-mean and urdtiga using static
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normalization valuegx/o;, k/a;) precomputed from a fixed training collection:

dr (X,Y) — Hr +0‘7dt(x,y) K

=0.3
d(x,y) =0. o o

(4)

5.2 Limitations

The above algorithm for computing music similarity creates nearest neightomisch exhibit
very high hubness. In the case of the FM4 Soundpark application, whigtys displays the top-5
nearest neighbors of a song, a similarity space with high hubness has adiatemegative impact
on the quality of the results of the application. High hubness leads to ciredammendations and
to the effect that some songs never occur in the nearest neighbor la@is-aitubs push out other
objects from thék = 5 nearest neighbors. As a result of high hubness only 72.63% of tiys soe
reachable in the recommendation interface using the standard algorithm,, thagrie quarter of
songs can never be reached in the application (more details are disousedext section).

In the following, we show that MP can improve this considerably. We use lPtwo of the
above mentioned aspects: (i) the linear combination of multiple similarity measuresntoire
timbre and rhythm similarities, and (ii) the approximation of the MP parametergmputing all
pairwise similarities would be highly impractical in a collection of this size.

5.3 Evaluation and Results

To evaluate the impact of MPon the application, we use MRn the linear combination of the
rhythmicd, and timbred; similarities:

dM Ps(X7 Y) =0.3M PS;30(dI' (X, y) + 0.7M PS:30(d[ (X7 y)) )

and compare the result to the standard variant (Equation 4) of the algoritabie 5 shows the
results of the comparison (including a random baseline algorithm). As with tbinglearning
data sets evaluated previously, we observe that the hulsfieséwhich is particularly relevant for
the application) decreases from 5.65 to 2.32. This is also visible ik-teeurrence N¥) of the
biggest hub object\X,.,, which fork = 5 decreases from 242, with the standard algorithm, to 70.
We also compute theetrieval accuracy R (the average ratio of song genre labels matching the
guery object’s genre) fdt = 1,5,10. For a query songand a list of recommendatioms=1...Kk,
the retrieval accuracy over their multiple genres is computed as:

1 & |Genregx) N Genresi))|
k4 |Genregx) UGenresi)|’

R(%)

Similarly to the increase in classification accuracies for the machine learrniagetaR¥ increases
in all configurations. The music genre labels used in this evaluations oridinatehe artists who
uploaded their songs to the Soundpark (see Table 4 for the music gadrégea distribution in the
collection).

The decrease of hubness produced bysNE#ads to a concurrent increase in the reachability
of songs in the nearest neighbor graphs. Instead of only 72.6%, 88.2%songs are reachable
via k = 5 nearest neighbor recommendation lists. If the application were to randamigle 5
recommendations from the= 10 nearest neighbors, the reachability withdould even increase
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Pop Rock Electronica Hip-Hop Funk Reggae
37.6% 46.3% 44.0% 143% 19.7% 5.3%

Table 4: Music genre/class distribution of the songs in the FM4 Soundmdidction used for
our experiments. Each artist can assign a newly uploaded song to ong@iofitbhese
predefined genres. There are a total of 11 229 songs in our collecimsisot. As every
song is allowed to belong to more than one genre, the percentages in thedihhip &
more than 100%.

(a) Original (b) Mutual Proximity (c) Random
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2500 25001 - MmP

2000 200071
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25 0 5 10 15 20 25
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Figure 14: NK=>-occurrences of songs in the nearest neighbors for (a) the staalggrithm, (b)
the linear combination using MPand (c) random distances.

to 93.7% (from 81.9%) while the retrieval accura@yfor k = 10 would only slightly drop compared
tok=5.

Figure 14 shows a histogram plot of tNé=> occurrence of songs for the standard algorithm
and MR;. The decrease of skewness is clearly visible as the number of songaahatver rec-
ommended drops from about 3000 to 1500—thus a more even distributiofect®in the nearest
neighbors is achieved. The positive effects of usingshiRthis application are thus clearly visible:
we obtain an improvement of retrieval accuracy and a decrease oéssilpaired with an increase
of reachability in the nearest neighbors.

6. Conclusion

We have presented a possible remedy for the ‘hubness’ problems, iwhitto occur when learning
in high-dimensional data spaces. Considerations on the asymmetry of oeigldiions involving
hub objects led us to evaluate a recent local scaling method, and to prapese global variant
named ‘mutual proximity’ (MP). In a comprehensive empirical study we stbthiat both scaling
methods are able to reduce hubness and improve classification accarael as other perfor-
mance indices. Local and global methods perform at about the sameBetkeImethods are fully
unsupervised and very easy to implement. Our own global scaling vari@rgrsented in this pa-
per offers the additional advantage of being easy to approximate fer datg sets which we show
in an application to a real-world music recommendation service.
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Characteristic Standard MPs (Randony
Retrieval AccuracyR1 51.9% 54.5% 29.0%
Retrieval AccuracyR<=> 48.2% 50.1% 28.5%
Retrieval AccuracyR<=10 47.1% 48.6% 28.4%
Hubnesss<> 5.65 231 0.46
Maximum Hub sizeNkZ2 242 70 17
Reachabilityk = 5 72.6% 86.2% 99.4%
HubnessS—10 501 214 0.36
Maximum Hub sizeNk-10 416 130 25
Reachabilityk = 10 81.9% 93.7% 99.9%

Table 5: Evaluation results of the FM4 Soundpark data set comparing tidastemethod to Mg
A random algorithm is added as baseline.

Our results indicate that both global and local scaling show very berefftéats concerning
hubness on a wide range of diverse data sets. They are especiatitivefffor data sets of high
dimensionality which are most affected by hubness. There is only little impacidbdegradation
of performance with data sets of low dimensionality. It is our hope that this eapstudy will
be the starting point of more theoretical work and consideration conggifmenconnection between
hubness, asymmetric neighbor relations, and the benefits of similarity spaséotmations.

The main evaluation scripts used in this work are publicly available to permibdeption of
our resultst3
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