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Abstract
‘Hubness’ has recently been identified as a general problem of high dimensional data spaces, man-
ifesting itself in the emergence of objects, so-called hubs, which tend to be among thek nearest
neighbors of a large number of data items. As a consequence many nearest neighbor relations in
the distance space are asymmetric, that is, objecty is amongst the nearest neighbors ofx but not
vice versa. The work presented here discusses two classes ofmethods that try to symmetrize near-
est neighbor relations and investigates to what extent theycan mitigate the negative effects of hubs.
We evaluate local distance scaling and propose a global variant which has the advantage of being
easy to approximate for large data sets and of having a probabilistic interpretation. Both local and
global approaches are shown to be effective especially for high-dimensional data sets, which are
affected by high hubness. Both methods lead to a strong decrease of hubness in these data sets,
while at the same time improving properties like classification accuracy. We evaluate the methods
on a large number of public machine learning data sets and synthetic data. Finally we present a
real-world application where we are able to achieve significantly higher retrieval quality.

Keywords: local and global scaling, shared near neighbors, hubness, classification, curse of
dimensionality, nearest neighbor relation

1. Introduction

In a recent publication in this journal, Radovanović et al. (2010) describe the so-called ‘hubness’
phenomenon and explore it as a general problem of machine learning in high-dimensional data
spaces. Hubs are data points which keep appearing unwontedly often asnearest neighbors of a
large number of other data points. This effect is particularly problematic in algorithms for similarity
search (for example, similarity-based recommenders), as the same similar objects are found over
and over again and other objects are never recommended. The effect has been shown to be a natural
consequence of high dimensionality and as such is yet another aspect ofthe curse of dimensionality
(Bellman, 1961).

A direct consequence of the presence of hubs is that a large number ofnearest neighbor rela-
tions in the distance space are asymmetric, that is, objecty is amongst the nearest neighbors ofx
but not vice versa. A hub is by definition the nearest neighbor of a largenumber of objects, but
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these objects cannot possibly all be the nearest neighbor of the hub. This observation connects
the hub problem to methods that attempt to symmetrize nearest neighbor relations, such as ‘shared
near neighbors’ (Jarvis and Patrick, 1973) and ‘local scaling’ (Zelnik-Manor and Perona, 2005).
While these methods require knowledge of the local neighborhood of every data point, we propose
a global variant that combines the idea of ‘shared near neighbor’ approaches with a transformation
of distances to nearest neighbor ‘probabilities’ to define a concept we call Mutual Proximity. The
approach is unsupervised and transforms an arbitrary distance function to a probabilistic similarity
(distance) measure. Contrary to the local variants, this new approach lends itself to fast approxima-
tion for very large data bases and enables easy combination of multiple distance spaces due to its
probabilistic nature.

In experiments with a large number of public machine learning databases we show that both
local and global scaling methods lead to: (i) a significant decrease of hubness, (ii) an increase ofk-
nearest neighbor classification accuracy, and (iii) a strengthening of the pairwise class stability of the
nearest neighbors. To demonstrate the practical relevance, we apply our global scaling algorithm
to a real-world music recommendation system and show that doing so significantly improves the
retrieval quality.

To permit other researchers to reproduce the results of this paper, all databases and the main
evaluation scripts used in this work have been made publicly available.1

2. Related Work

The starting point for our investigations is a field where the existence of hubs has been well doc-
umented and established, namely, Music Information Retrieval (MIR). One of the central notions
in MIR is that of music similarity. Proper modeling of music similarity is at the heart of many ap-
plications involving the automatic organization and processing of music data bases. In Aucouturier
and Pachet (2004), hub songs were defined as songs which are, according to an audio similarity
function, similar to very many other songs and therefore keep appearing unwontedly often in rec-
ommendation lists, preventing other songs from being recommended at all. Such songs that do not
appear in any recommendation list have been termed ‘orphans’. Similar observations about false
positives in music recommendation that are not perceptually meaningful havebeen made elsewhere
(Pampalk et al., 2003; Flexer et al., 2010; Karydis et al., 2010). The existence of the hub problem
has also been reported for music recommendation based on collaborative filtering instead of audio
content analysis (Celma, 2008). Similar effects have been observed in image (Doddington et al.,
1998; Hicklin et al., 2005) and text retrieval (Radovanović et al., 2010), making this phenomenon a
general problem in multimedia retrieval and recommendation.

In the MIR literature, Berenzweig (2007) first suspected a connection between the hub problem
and the high dimensionality of the feature space. The hub problem was seenas a direct result of
the curse of dimensionality (Bellman, 1961), a term that refers to a number ofchallenges related to
the high dimensionality of data spaces. Radovanović et al. (2010) were able to provide more insight
by linking the hub problem to the property ofconcentration(François et al., 2007) which occurs as
a natural consequence of high dimensionality. Concentration is the surprising characteristic of all
points in a high dimensional space to be at almost the same distance to all other points in that space.
It is usually measured as a ratio between some measure of spread and magnitude. For example, the
ratio between the standard deviation of all distances to an arbitrary reference point and the mean of

1. Databases and scripts can be found athttp://www.ofai.at/~dominik.schnitzer/mp.
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these distances. If this ratio converges to zero as the dimensionality goes to infinity, the distances are
said to concentrate. For example, in the case of the Euclidean distance and growing dimensionality,
the standard deviation of distances converges to a constant while the mean keeps growing. Thus the
ratio converges to zero and the distances are said to concentrate.

The effect of distance concentration has been studied for Euclidean spaces and otherℓp norms
(Aggarwal et al., 2001; François et al., 2007). Radovanović et al. (2010) presented the argument that
in the finite case, due to this phenomenon some points are expected to be closerto the data-set mean
than other points and are at the same time closer, on average, to all other points. Such points closer
to the data-set mean have a high probability of being hubs, that is, of appearing in nearest neighbor
lists of many other points. Points which are further away from that mean havea high probability of
being ‘orphans’, that is, never appearing in any nearest neighbor list.

Nearest neighbor search is an essential method in many areas of computerscience, such as pat-
tern recognition, multimedia search, vector compression, computational statistics and data mining
(Shakhnarovich et al., 2006) and, of course, information retrieval and recommendation. It is a well
defined task: given an objectx, find the most similar object in a collection of related objects. In the
case of recommendation, thek most similar objects are retrieved withk<< n (n being the number
of all objects in the data base). Since hubs appear in very many nearest neighbor lists, they tend
to render many nearest neighbor relations asymmetric, that is, a huby is the nearest neighbor ofx,
but the nearest neighbor of the huby is another pointa (a 6= x). This is because hubs are nearest
neighbors to very many data points but onlyk data points can be nearest neighbors to a hub since
the size of a nearest neighbor list is fixed. This behavior is especially problematic in classification
or clustering ifx andy belong to the same class buta does not, violating what Bennett et al. (1999)
called thepairwise stabilityof clusters. Radovanović et al. (2010) coined the termbad hubsfor
points that show a disagreement of class information for the majority of data points they are nearest
neighbors to. Figure 1 illustrates the effect: althougha is, in terms of the distance measure, the
correct answer to the nearest neighbor query fory, it may be beneficial to use a distance measure
that enforces symmetric nearest neighbors. Thus a small distance between two objects should be
returned only if their nearest neighbors concur.

This links the hub problem to ‘shared near neighbor’ (SNN) approaches, which try to sym-
metrize nearest neighbor relations. The first work to use common near neighbor information dates
back to the 1970s. Jarvis and Patrick (1973) proposed a ‘shared near neighbor’ similarity measure
to improve the clustering of ‘non-globular’ clusters. As the name suggests,the shared near neighbor
(SNN) similarity is based on computing the overlap between thek nearest neighbors of two objects.
Shared near neighbor similarity was also used by Ertöz et al. (2003) to find the most representative
items in a set of objects. Pohle et al. (2006) define a related similarity measure based on the rank of
nearest neighbors. They call their method ‘proximity verification’ and useit to enhance audio sim-
ilarity search. Jin et al. (2006) use the reverse nearest neighbor (RNN) relation to define a general
measure for outlier detection.

Related to SNN approaches are local scaling methods, which use local neighborhood informa-
tion to rescale distances between data points. The intention is to find specific scaling parameters for
each point, to be used to tune the pairwise distances in order to account fordifferent local densities
(scales) of the neighborhoods. Local scaling in this sense was first introduced as part of a spectral
clustering method by Zelnik-Manor and Perona (2005). It transforms arbitrary distances using the
distance between objectx and itsk’th nearest neighbor (see Section 3.1 below). In the context of im-
age retrieval, Jegou et al. (2010) describe a related method called ‘contextual dissimilarity measure’
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(a) Original nearest neighbor rela-
tions
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(b) Desired nearest neighbor rela-
tions

Figure 1: Schematic plot of two classes (black/white filled circles). Each circle has its nearest
neighbor marked with an arrow: (a) violates thepairwise stabilityclustering assumption,
(b) fulfills the assumption. In many classification and retrieval scenarios, (b) would be
the desired nearest neighbor relation for the data set.

(CDM) and show that it reduces the error rates of the retrieval algorithmsignificantly, observing
that “the neighborhood symmetry rate increases”, while at the same time “the percentage of never
seen images decreases”, and in addition that “the most frequent image is returned 54 times in the
first 10 positions with the CDM, against 1062 times using the standard L1 distance”. While they do
not explicitly make reference to the notion of hubs, their observations indicate the potential of local
distance scaling to mitigate hub-related problems.

3. Scaling Methods

In the previous section we have seen that (i) the emergence of hubs leadsto asymmetric nearest
neighbor relations and that (ii) literature already contains hints that local scaling methods seem to
improve the situation. However a detailed analysis of these facts and a systematic connection to the
investigations of Radovanović et al. (2010) has not yet been done.

In what follows we review the local scaling methods and introduce a new global variant, which
is also very simple to use. Due to its probabilistic modeling it possesses certain advantages over the
local variant. Both methods are evaluated in regard to their effects on hubness in Section 4.

All the methods described here assume an underlying distance (divergence) measure with the
following properties:

Definition 1 Given a non-empty set M with n objects, each element mx ∈ M is assigned an index
x= 1. . .n. We define a divergence measure d: M×M →R satisfying the condition of non-negativity
in its distances:
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• non-negativity: d(mx,my)≥ 0, mx,my ∈ M,

Individual objectsmx ∈ M are referenced in the text by their indexx. The distance between two
objectsx andy is denoted asdx,y.

3.1 Local Scaling

Local scaling (Zelnik-Manor and Perona, 2005) transforms arbitrarydistances to so-calledaffinities
(that is, similarities) according to:

LS(dx,y) = exp

(

− dx,y
2

σx σy

)

, (1)

whereσx denotes the distance between objectx and itsk’th nearest neighbor.LS(dx,y) tends to
make neighborhood relations more symmetric by including local distance statisticsof both data
points x and y in the scaling. The exponent in Equation 1 can be rewritten asdx,y

2/σx σy =
(dx,y/σx)(dx,y/σy): only when both parts in this product are small will the locally scaled similarity
LS(dx,y) be high. That is,x andy will be considered close neighbors only if the distancedx,y is small
relative to both local scalesσx andσy. Jegou et al. (2007) introduce a closely related variant called
non-iterative contextual dissimilarity measure (NICDM). Instead of using the distance to thek’th
nearest neighbor to rescale the distances, the average distance of thek nearest neighbors is used.
This should return more stable scaling numbers and will therefore be used inall our evaluations.
The non-iterative contextual dissimilarity measure (NICDM) transforms distances according to:

NICDM(dx,y) =
dx,y√
µxµy

,

whereµx denotes the average distance to thek nearest neighbors of objectx. The iterative version
of this algorithm performs the same transformation multiple times until a stopping criterion is met.
Since these iterations yield only very minor improvements at the cost of increased computation
time, we used the non-iterative version in our evaluations.

3.2 Global Scaling - Mutual Proximity

In this section we introduce a global scaling method that is based on: (i) transforming a distance
between pointsx andy into something that can be interpreted as the probability thaty is the closest
neighbor tox given the distribution of the distances of all points tox in the data base; and (ii)
combining these probabilistic distances fromx to y andy to x via their joint probability. The result is
a general unsupervised method to transform arbitrary distance matrices tomatrices of probabilistic
mutual proximity(MP). In contrast to local scaling methods, which use the local neighborhood
information, MP uses information about all objects—thus the term global scaling.

The general idea of MP is to reinterpret the original distance space so that two objects sharing
similar nearest neighbors are more closely tied to each other, while two objectswith dissimilar
neighborhoods are repelled from each other. This is done by reinterpreting the distance of two
objects as a mutual proximity in terms of their distribution of distances.
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(a) Original space: A tight cluster
(gray dots in the center) placed in
a loose background cluster (black
dots).

(b) The affinity of two points in
the original space is indicated by
the thickness of the line connecting
two points.

(c) Affinities after applying Mutual
Proximity to the distances.

Figure 2: The effect of scaling techniques. Objects with similar nearest neighbors are tied together
closely, while objects with dissimilar neighbors are repelled.

Figure 2 illustrates the effect of this reinterpretation in an example. The effect which can be seen
here is similar to the intuitive repair of nearest neighbor relation as it was discussed in the beginning
in Section 2 (Figure 1).

Figure 2a plots points from two classes on a two dimensional plane. A tight cluster (the gray
dots in the center) is placed in a loose background cluster (black dots). Figure 2b connects close
neighbors with lines according to a Delaunay triangulation.2 The thickness of the lines shows the
affinity of two neighboring points according to their Euclidean distance. Thethird plot (Figure 2c)
plots the affinities after applying MP. It can be clearly seen that points fromthe loose cluster as well
as points from the tight cluster now both have a high intra-class affinity. However, at the cluster
borders there is weak affinity and strong separation as points from the tight cluster have different
nearest neighbors than points from the background cluster.

This visible increase in class separation can also be measured in terms of classification rates.
Simple two class k-nearest neighbor classification (tight vs. loose cluster)with this artificially gen-
erated data yields the following results: In the original space 96.4% of the nearest neighbors (at
k= 1) are classified correctly; after applying MP, all (100%) of the nearest neighbors can be classi-
fied correctly. Fork= 5 the classification rate increases from 95.2% to 98.8%.

3.2.1 COMPUTING MUTUAL PROXIMITY (MP)

To compute MP, we assume that the distancesdx,i=1..n from an objectx to all other objects in our
collection follow a certain probability distribution. For example, Casey et al. (2008) and Cai et al.
(2007) show that theℓp distances they compute follow a Gamma distribution. Ferencz et al. (2005)
used the Gamma distribution to modelℓ2 distances from image regions. Pȩkalska and Duin (2000)
show in general that based on the central limit theorem and if the feature vectors are independent and

2. A Delaunay triangulation ensures that the circumcircle associated with each triangle contains no other point in its
interior, that is, no lines cross. This restriction is helpful for visualization purposes.
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identically distributed (i.i.d.), theirℓ2 distances approximately follow a normal distribution. As real
data is not i.i.d., this can not be assumed. We, however, note that the accuracy of this approximation
increases with increasing intrinsic dimensionality (François et al., 2007).

Under the assumption that all distances in a data set follow a certain distribution, any distance
dx,y can now be reinterpreted as the probability ofy being the nearest neighbor ofx, given their
distancedx,y and the probability distributionP(X). P(X) is defined by the distances ofx to all other
objects in the collection. In fact the probability that a randomly drawn elementzwill have a distance
dx,z > dx,y can then be computed:

P(X > dx,y) = 1−P(X ≤ dx,y) = 1−Fx(dx,y).

Fx denotes the cumulative distribution function (cdf) which is assumed for the distribution of
distancesdx,i=1..n. This way the probability of an element being a nearest neighbor ofx increases
with decreasing distance.

For illustration purposes we assume that in our collection the distances are normally distributed.
Figure 3a shows a schematic plot of the probability density function (pdf) that was estimated for
the distances of some objectx. The mean distance or expected distance fromx (µ̂x) is in the center
of the density function. Objects with a small distance tox (that is, objects with high similarity in
the original space) find their distance towards the left of the density function. Note that the leftmost
possible distance in this sketch isdx,x = 0.3 Figure 3b plots the probability ofy being the nearest
neighbor ofx givendx,y (the gray filled area). The probability increases the smaller the distance to
x is, or the farther left its distance is on the x-axis of the pdf.

Note that this reinterpretation naturally leads to asymmetric probabilities for a given distance,
as the distance distribution estimated forx may be different from the one estimated fory; x might be
the nearest neighbor ofy but not vice versa. Contrary to the original distances the probabilities now
encode this asymmetric information. This allows for a convenient way to combinethe asymmetric
probabilities into a single expression, expressing the probability ofx being a nearest neighbor ofy
and vice versa.

Definition 2 We compute the probability that y is the nearest neighbor of x given P(X) (the pdf
defined by the distances dx,i=1...n) and x is the nearest neighbor of y given P(Y) (the pdf defined
by the distances dy,i=1...n), with their joint distribution P(X,Y). The resulting probability is called
Mutual Proximity (MP):

MP(dx,y) = P(X > dx,y∩Y > dy,x)

= 1−P(X ≤ dx,y∪Y ≤ dx,y)

= 1− [P(X ≤ dx,y)+P(Y ≤ dy,x)−P(X ≤ dx,y∩Y ≤ dy,x)] .

Figure 4 illustrates MP for the distancedx,y and the joint distance distribution ofX andY,
P(X,Y). Each point of the plot refers to an object in the collection and its distance to pointsx andy.
The shaded area (II) then defines the probability which is computed by MP.Sectors I+III correspond

3. Strictly speaking, then, the interpretation of this as a normal distribution is incorrect, since distances< 0 are not
possible. However, we find the interpretation useful as a metaphor that helps understand why it makes sense to
combine different views. We will do so in this section.
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(a) The closer other elements are tox, the more to the left is their distance located on
the x-axis of the density function plot. The leftmost possible observation in the data
is the distancedx,x = 0.
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(b) The shaded area shows the probability thaty is the nearest neighbor ofx based
on the distancedx,y and X. The closery is to x (the smallerdx,y) the higher the
probability.

Figure 3: Schematic plot of the probability density function of a normal distribution which was
estimated from the distancesdx,i=1...n: X ∽ N(µ̂x, σ̂x).

to the probability ofx being the nearest neighbor ofy, IV+III to the probability ofy being a nearest
neighbor ofx and III to their joint probability:

II = MP(dx,y) = 1− [(I + III )+(IV + III )− III ].

It is straightforward to compute MP using the empirical distribution, as illustratedin Figure 4.
If the number of observations is large enough, we will tend to model the true underlying distribution
closely. Computing MP for a given distancedx,y in a collection ofn objects and using the empirical
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Figure 4: Visualizing the Mutual Proximity for the two pointsx, y, and their distancesdx,y, dy,x.

distribution boils down to simply counting the number of objectsj having a distance tox andy
which is greater thandx,y:

MP(dx,y) =

∣

∣

{

j : dx, j > dx,y
}

∩
{

j : dy, j > dy,x
}∣

∣

n
.

For distances where the underlying distribution is known, estimating its parameters can be
straightforward. For example, the parameters of normal distributionsN(µ̂, σ̂2), or Gamma distri-
butionsΓ(k̂, θ̂) can be estimated quickly with the sample mean ˆµx and variancêσ2

x of the distances
dx,i=1..n:

Nx ∽ µ̂x =
1
n

n

∑
i=1

dx,i , σ̂2
x =

1
n

n

∑
i=1

(dx,i − µ̂x)
2, (2)

Γx ∽ k̂x =
µ̂2

x

σ̂2
x
, θ̂x =

σ̂2
x

µ̂x
.

In our experiments we will generally estimate MP directly from the empirical distribution. In ad-
dition we will also evaluate MP with different underlying parametric distance distributions, such as
the Gauss or Gamma distribution (Section 4).

3.2.2 APPROXIMATIONS

The definition of MP (Definition 2) requires estimating a joint distributionP(X,Y) for all distance
pairsdx,y, which is usually expensive to compute. On the other hand, if independence could be as-
sumed between distributionsP(X) andP(Y), the computation of MP would simplify in accordance
with the product rule:

MPI (dx,y) = P(X > dx,y) ·P(Y > dy,x). (3)
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We will show in our experiments that assuming independence in the computation of MP does not
affect the results in an adverse way (Section 4).

In the base case where MP is computed from the empirical distribution as well asall other vari-
ants presented so far, the computational cost of computing MP grows quadratically with the size
of the data set as all methods require the full distance matrix (that is, all possible distances) to be
computed. To circumvent this, we propose to estimate the distribution parametersby randomly se-
lecting a small fraction of objects to compute the mean and standard deviation of distances for each
object using only the subset of objects. We denote MP where the parameters have been estimated
by sampling from the collection with MPS. The parameterSspecifies how many objects have been
randomly sampled. The appropriate sample size is naturally dependent on theunderlying distri-
bution. However if a normal distribution may be assumed, a sample size as small as S= 30 will
already yield stable results for MP.

The difference to the original estimation of the parameters in Equation 2 is that only a small
fraction of distances (S×n) needs to be computed, which, for constantS, reduces the complexity
from quadratic to linear inn. This is also more efficient than local scaling, where the actual nearest
neighbors of pointsx andy need to be identified. While local scaling methods can of course be used
with fast nearest neighbor search algorithms indexing the high dimensionalspaces, the complexity
is far higher than randomly sampling only a constant number of distances.

Experimental verification that these approximations of the original idea are still valid will be
presented in Section 4.

3.2.3 LINEAR COMBINATION OF DISTANCE MEASURES

Another nice property of MP which can be useful in some contexts is that MPyields[0,1]-normalized
similarities. Thus, the MP transformation can easily be used to linearly combine multiple different
distance measuresd1 andd2 for some combination weightsω1,2:

d = ω1MP(d1)+ω2MP(d2).

Similar to a global zero-mean unit-variance normalization, each object’s distances are also stan-
dardized by their respective mean and standard deviation. Thus, no distance measure can dominate
the other in this combination. This property is useful in scenarios where multipledifferent dis-
tance measures (describing different aspects of a phenomenon) needto be linearly combined. A
real-world example where this is necessary is presented in Section 5.

4. Evaluation

To investigate the effects of using local neighborhood scaling methods andMP, we first evaluate the
methods on 30 public machine learning data sets. Each data set is characterized by the following
parameters: name/origin, number of classes, size/number of itemsn and data dimensionalityd.
For each data set we evaluate the original distance space and compare it tothe distances that are
generated by the local scaling method and by MP.

After showing the impact of the scaling methods in regard to the hub problem onreal data sets
in the first set of experiments, a second series of experiments investigatesthe effects of the methods
more deeply. Synthetic as well as real data is used.
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4.1 Benchmarks

To quantify the impact of the two methods, a number of properties and quality measures are com-
puted for the original and the new distances. The characteristics which wecompute for each data
set are:

4.1.1 LEAVE-ONE-OUT k-NEARESTNEIGHBOR CLASSIFICATION ACCURACY (Ck)

We report thek-nearest neighbor (kNN) classification accuracy using leave-one-out cross-validation,
where classification is performed via a majority vote among thek nearest neighbors, with the class
of the nearest neighbor used for breaking ties. We denote thek-NN accuracy asCk. In the context
of a retrieval problem, higher values would indicate better retrieval quality.4

To test for statistical significance differences in classification accuracybetween two algorithms,
we use McNemar’s test (see Salzberg, 1997 and Dietterich, 1998 for a discussion of using this test
in conjunction with leave-one-out classification). When comparing two algorithms A and B, only
classification instances where A and B disagree are being analyzed. More specifically, it is tested
whether the number of times that A classifies correctly and B does not is significantly different from
the number of times B classifies correctly and A does not.

4.1.2 K-OCCURRENCE(Nk(x))

Defines thek-occurrences of objectx, that is, the number of timesx occurs in thek nearest neighbor
lists of all other objects in the collection.

4.1.3 HUBNESS(Sk)

We also compute thehubnessof the distance space of each collection according to Radovanović
et al. (2010). Hubness is defined as the skewness of the distribution ofk-occurrencesNk:

Sk =
E
[

(Nk−µNk)
3
]

σ3
Nk

.

Positive skewness indicates high hubness, negative values low hubness.

4. To clarify the cross-validation (CV) process: We first compute the distance matrix for the entire data set ofn instances,
transform this into an MP matrix, and then perform leave-one-out cross-validation on the data set ofn instances, in
each iterationi using one of then instances (xi) as a test case to be classified by its nearest neighbors among the
remainingn− 1 instances. It might seem that the ‘test’ examplexi plays an undue role in this process, having
contributed to the the normalization of the distance matrix before being used as a ‘new’ test case. However, in a
‘real’ classification scenario, where we would have a fixed training setXn−1 (consisting ofn−1 instances) and are
presented with a new objectxi to classify (not contained inXn−1), we would also first have to compute the full
distance matrix overXn−1∪{xi} in order to then be able to compute MP over this matrix. (That is because MP needs
information about all distances to and fromxi .)

The result of this would be exactly the MP matrix we compute beforehand in our cross-validation process—and
it is the exact same matrix for all other ‘test’ instances fromX. Thus, it is legitimate to compute this once and for
all before the CV. On the other hand, the above means that using MP in a ‘real’ classification scenario is expensive,
because before being able to classify a new instance, first a complete distance and MP matrix have to be computed.
What makes this process feasible in practice is the MP approximation MPS described in Section 3.2.2.
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4.1.4 GOODMAN-KRUSKAL INDEX (IGK)

The Goodman-Kruskal Index (Günter and Bunke, 2003) is a clusteringquality measure that relates
the number ofconcordant(Qc) anddiscordant(Qd) tuples (di, j , dk,l ) of a distance matrix.

• A tuple is concordant if its itemsi, j are from the same class, itemsk, l are from different
classes anddi, j < dk,l .

• A tuple is discordant if its itemsi, j are from the same class, itemsk, l are from different
classes anddi, j > dk,l .

• A tuple is not counted if it is neither concordant nor discordant, that is, ifdi, j = dk,l .

The Goodman-Kruskal Index (IGK) is defined as:

IGK =
Qc−Qd

Qc+Qd
.

IGK is bounded to the interval[−1,1], and the higherIGK, the more concordant and fewer dis-
cordant quadruples are present in the data set. Thus a large index value indicates a good clustering
(in terms ofpairwise stability—see Section 2).

Other indices to compare clustering algorithms like the classic Dunn’s Index orDavies-Bouldin
Index (Bezdek and Pal, 1998) cannot be used here as their values donot allow a comparison across
different distance measures.

4.1.5 INTRINSIC DIMENSIONALITY (dmle)

To further characterize each data set we compute an estimate of the intrinsic dimensionality of
the feature spaces. Whereas the embedding dimension is the actual number of dimensions of a
feature space, the intrinsic dimension is the—often much smaller—number of dimensions necessary
to represent a data set without loss of information. It has also been demonstrated that hubness
depends on the intrinsic rather than embedding dimensionality (Radovanović et al., 2010). We use
the maximum likelihood estimator proposed by Levina and Bickel (2005), whichwas also used by
Radovanovíc et al. (2010) to characterize the data sets.

4.1.6 PERCENTAGE OF SYMMETRIC NEIGHBORHOOD RELATIONS

We call a nearest neighbor relation between two pointsx andy ‘symmetric’ if the following holds:
objectx is a nearest neighbor ofy if and only if y is also the nearest neighbor ofx. As both exam-
ined methods aim at symmetrizing neighborhood relations, we report the percentage of symmetric
relations at different neighborhood sizesk.

4.2 Public Machine Learning Data Sets

We evaluate the proposed method by applying it to 30 different public machinelearning data sets.
The data sets include problems from the general machine learning field, andthe bio-medical, image,
text and music retrieval domains. We use the following data sets:
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• The UCI Machine Learning Repository (UCI, see Frank and Asuncion, 2010) data sets:
arcene, gisette, mfeat-pixels/karhunen/factors, dexter, mini-newsgroups, dorothea, reuters-
transcribed.5

• The Kent Ridge bio-medical data sets (KR): amlall, lungcancerandovarian-61902.6

• The LibSVM data sets (LibSVM, see Chang and Lin, 2001):australian, diabetes, german
numbers, liver-disorders, breast-cancer, duke (train), heart, sonar, colon-cancer, fourclass,
ionosphere, splice.7

• The Music Information Retrieval Evaluation eXchange (MIREX) data sets (Mirex, see Downie,
2008):ballroomandismir2004.8

• Two music artist web pages and tweets data sets (CP, see Schedl, 2010):c1ka-twitterand
c224a-web.9

For the general machine learning data sets from the statistical or biological domains no feature
extraction is necessary. The feature vectors can be downloaded directly from the respective repos-
itories. These general machine learning data sets use the standard Euclidean distance (denoted as
ℓ2) as similarity measure.

The text retrieval data sets (reuters-transcribed, c224a-web, movie-reviews, dexter,
mini-newsgroups, c1ka-twitter) need to be preprocessed before evaluating them.10 To this end we
employ stop-word removal and stemming. They are transformed into the bag-of-words representa-
tion, and standardt f · id f (term frequency· inverse document frequency) weights are computed (see
for example Baeza-Yates and Ribeiro-Neto, 1999). The word vectors are normalized to the average
document length. Individual document vectors are compared with the cosine distance (denoted as
cos).

For the image retrieval data set (corel) normalized color histograms are computed as features.
They show reasonable classification performance despite their simplicity, asChapelle et al. (1999)
show. The three 64-dimensional color histograms are concatenated into a single vector and com-
pared using the Euclidean distance (ℓ2).

To extract the features for the two music information retrieval data sets (ismir2004, ballroom) we
use a standard algorithm from Mandel and Ellis (2005) which computes MelFrequency Cepstrum
Coefficients (Logan, 2000) and models each object as a multivariate normal distribution over these.
Objects (models) are compared using the symmetrized Kullback-Leibler divergence (denoted as
skl).

4.3 Results

In the following experiments we compute all previously introduced benchmarknumbers for the
original data and the distance spaces after applying the scaling methods (NICDM, MP). We use MP
as defined in Section 3.2 and model the distance distributions with the empirical distribution.

5. The UCI Repository can be found athttp://archive.ics.uci.edu/ml/.
6. The Kent Ridge data sets can be found athttp://datam.i2r.a-star.edu.sg/datasets/krbd/.
7. LibSVM can be found athttp://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
8. The MIREX data sets can be found athttp://www.music-ir.org/mirex.
9. These data sets can be found athttp://www.cp.jku.at/people/schedl/datasets.html.

10. Setc1ka-twitterequalsc3ka-twitterfrom CP, omitting artists classified as ‘rock’ to balance the data.
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Tables 1 and 2 show the results of the evaluations conducted on the 30 previously introduced
public data sets. The collections have very diverse properties. There are collections likefourclass
or liver-disorderswith very low dimensionality (d = 2 andd = 6), as well as data sets with very
high embedding dimensionality, such asdorothea(d = 100000) orc1ka-twitter(d = 49820). Re-
lated to that, columndmle lists the intrinsic dimensionality according to the maximum likelihood
estimator. Using the intrinsic dimensionality estimate we can see that there are data sets where the
data is originally represented using high-dimensional feature vectors, although the data’s intrinsic
dimensionality is quite low. For example theovarian_61902data set has an embedding dimension
of d = 15154 but its estimated intrinsic dimension is onlydmle= 9.

The evaluation results in Tables 1 and 2 are sorted by the hubnessSk=5 of the original distance
space (printed in bold). In subsequent plots individual collections are referenced by their numbers
as given in Tables 1 and 2. The columnsCk=1/Ck=5 show thek-nearest neighbor classification rates
of the collections. The classification rates with the original distances, the local scaling (NICDM)
and the global scaling (MP) are documented. For convenience the column+/- shows the difference
in classification accuracy, in terms of absolute percentage points, betweenthe original distances
and NICDM/MP. All improvements compared to the original distances are printed in bold. Statis-
tically significant differences are marked with an asterisk (McNemar’s test,df = 1, α = .05 error
probability).

Looking at the tables, a first observation is that very high-dimensional data sets (in terms of
their intrinsic as well as their embedding dimensionality) also tend to have high hubness. This is in
agreement with the results of Radovanović et al. (2010) and the theory that hubness is a consequence
of high dimensionality.

By looking at the classification rates (columnsCk=1 andCk=5) it can also clearly be observed that
the higher the hubness and intrinsic dimensionality, the more beneficial, in terms of classification
accuracy, NICDM and MP. For data sets with high hubness (in the collections we used, a value
above 1.4 seems to be a limit) the increase in classification rates is notable. ForCk=1, the accuracy
gain ranges from rather moderate 1 to up to 7−8 percentage points, and in the case ofc1ka-twitterit
is 15.9 percentage points for NICDM and 17.1 percentage points for MP. ForCk=5 the trend is even
clearer. Whereas only three changes in accuracy (relative to the original distances) are significant
for data sets with low hubness (Sk=5 ≤ 1.4, data sets 1–17), 34 changes in accuracy are significant
for data sets with high hubness (Sk=5 > 1.4, data sets 18–30). There is no statistically significant
negative change in terms of classification accuracies.

Figures 5 and 6 (left hand sides) present these results in bar plots where the y-axis shows the
index of the data sets (ordered according to hubness as in Tables 1 and 2) and the bars show the
increase or decrease of classification rates. The bar plots also directly show how MP compares to
NICDM in terms of classification accuracy fork = 1,5. Generally speaking, results for MP and
NICDM are very comparable. As fork = 1, MP and NICDM perform equally well and there is
no statistically significant difference between MP and NICDM (McNemar’s test, df = 1, α = .05
error probability). Based on the same statistical testing procedure, resultsfor NICDM andk= 5 are
significantly better than for MP for data sets 18, 20, 22 (marked with asterisks in Figure 6). The
general tendency of both MP and NICDM is comparable in the sense that if there is an improvement
compared to the original distances, it can be seen for both MP and NICDM.

Another observation from the results listed in Tables 1 and 2 is that both NICDM and MP
reduce the hubness of the distance space for all data sets to relatively lowvalues. The hubnessSk=5

decreases from an average value of 2.5 (original) to 0.29 (MP) and 0.94(NICDM), indicating a
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Name/Src. Cls. n d dmle Dist. Ck=1 +/-
Ck=5 +/-

Sk=5 IGK%-pts %-pts

fourclass (sc) 2 862 2 2 ℓ2 100% 100% 0.15 0.22
1. LibSVM NICDM 100% 0 100% 0 0.06 0.21

MP 100% 0 100% 0 0.04 0.23

arcene 2 100 10 000 399ℓ2 82.0% 75.0% 0.25 0.07
2. UCI NICDM 81.0% -1.0 77.0% 2.0 -0.27 0.06

MP 80.0% -2.0 81.0% 6.0 0.15 0.10

liver-disorders (sc) 2 345 6 6 ℓ2 62.6% 60.6% 0.39 0.00
3. UCI NICDM 63.2% 0.6 65.8% *5.2 -0.04 0.03

MP 62.9% 0.3 65.5% *4.9 -0.03 0.01

australian 2 690 14 3 ℓ2 65.5% 68.8% 0.44 0.13
4. LibSVM NICDM 65.7% 0.2 69.4% 0.6 -0.09 0.14

MP 65.4% -0.1 68.4% -0.4 0.08 0.14

diabetes (sc) 2 768 8 6ℓ2 70.6% 74.1% 0.49 0.20
5. UCI NICDM 69.8% -0.8 74.1% 0 0.04 0.15

MP 70.3% -0.3 73.2% -0.9 -0.02 0.19

heart (sc) 2 270 13 7 ℓ2 75.6% 80.0% 0.50 0.35
6. LibSVM NICDM 75.9% 0.3 79.3% -0.7 -0.00 0.27

MP 75.6% 0 80.4% 0.4 0.08 0.39

ovarian-61902 2 253 15 154 10ℓ2 95.3% 93.7% 0.66 0.20
7. KR NICDM 95.7% 0.4 93.3% -0.4 -0.10 0.19

MP 94.1% -1.2 94.1% 0.4 -0.28 0.19

breast-cancer (sc) 2 683 10 5ℓ2 95.6% 97.4% 0.71 0.89
8. LibSVM NICDM 95.8% 0.2 97.1% -0.3 0.19 0.42

MP 96.0% 0.4 97.1% -0.3 0.22 0.91

mfeat-factors 10 2 000 216 7ℓ2 95.0% 94.7% 0.79 0.71
9. UCI NICDM 94.8% -0.2 94.7% 0 0.15 0.76

MP 94.5% -0.5 94.9% 0.2 0.01 0.77

colon-cancer 2 62 2 000 11ℓ2 72.6% 77.4% 0.81 0.19
10. LibSVM NICDM 69.4% -3.2 82.3% 4.9 0.08 0.18

MP 67.7% -4.9 82.3% 4.9 -0.11 0.19

ger.num (sc) 2 1 000 24 8ℓ2 67.5% 71.7% 0.81 0.07
11. LibSVM NICDM 66.8% -0.7 72.0% 0.3 0.32 0.03

MP 67.6% 0.1 71.4% -0.3 0.11 0.07

amlall 2 72 7 129 32 ℓ2 91.7% 93.1% 0.83 0.31
12. KR NICDM 93.1% 1.4 97.2% 4.1 0.56 0.33

MP 88.9% -2.8 91.7% -1.4 -0.01 0.34

mfeat-karhunen 10 2 000 64 15ℓ2 97.4% 97.4% 0.84 0.76
13. UCI NICDM 97.2% -0.2 97.6% 0.2 0.27 0.74

MP 97.0% -0.4 97.5% 0.1 0.08 0.79

lungcancer 2 181 12 533 60ℓ2 98.9% 100% 1.07 0.56
14. KR NICDM 99.4% 0.5 98.9% -1.1 0.31 0.50

MP 98.3% -0.6 97.8% -2.2 0.01 0.56

c224a-web 14 224 1 244 41 cos 86.2% 89.3% 1.09 0.79
15. CP NICDM 87.9% 1.7 92.4% *3.1 0.42 0.89

MP 88.4% 2.2 92.4% 3.1 0.22 0.89

Table 1: Evaluation results ordered by ascending hubness (Sk=5) of the original distance space.
This table reports data sets with small hubness. Each evaluated data set (Name/Src) is
described by its number of classes (Cls.), its size (n), its extrinsic (d) and intrinsic (dmle)
data dimension and the distance measure used (Dist). ColumnsCk report the classification
accuracies at a givenk, the respective adjacent column+/- the difference in classification
accuracy between the original distances and NICDM/MP (in percentage points), column
IGK the Goodman-Kruskal Index. See Section 4.1 for an explanation of the individual
benchmarks.
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Name/Src. Cls. n d dmle Dist. Ck=1 +/-
Ck=5 +/-

Sk=5 IGK%-pts %-pts

mfeat-pixels 10 2 000 240 12ℓ2 97.6% 97.7% 1.25 0.75
16. UCI NICDM 97.2% -0.4 97.8% 0.1 0.28 0.75

MP 97.2% -0.4 97.5% -0.2 0.13 0.79

duke (train) 2 38 7 129 16 ℓ2 73.7% 68.4% 1.37 0.02
17. UCI NICDM 81.6% 7.9 68.4% 0 0.43 0.06

MP 76.3% 2.6 68.4% 0 0.21 0.03

corel1000 10 1 000 192 9 ℓ2 70.7% 65.2% 1.45 0.33
18. Corel NICDM 72.9% *2.2 72.0% *6.8 0.39 0.47

MP 71.6% 0.9 70.3% *5.1 0.31 0.50

sonar (sc) 2 208 60 11 ℓ2 87.5% 82.2% 1.54 0.07
19. UCI NICDM 87.0% -0.5 87.0% 4.8 0.47 0.08

MP 87.5% 0 84.1% 1.9 0.32 0.08

ionosphere (sc) 2 351 34 13ℓ2 86.9% 85.5% 1.55 0.31
20. UCI NICDM 92.3% *5.4 94.3% *8.8 0.28 0.07

MP 91.7% *4.8 89.7% *4.2 0.50 0.27

reuters-transcribed 10 201 2 730 70 cos 44.3% 49.3% 1.61 0.38
21. UCI NICDM 45.3% 1.0 52.7% 3.4 0.63 0.32

MP 42.3% -2.0 55.2% *5.9 0.18 0.43

ballroom 8 698 820 12 skl 54.3% 48.1% 2.98 0.15
22. Mirex NICDM 57.2% 2.9 51.6% *3.5 1.09 0.20

MP 56.6% 2.3 54.3% *6.2 0.30 0.18

ismir2004 6 729 820 25 skl 80.4% 74.1% 3.20 0.37
23. Mirex NICDM 83.8% *3.4 79.0% *4.9 0.77 0.21

MP 83.4% *3.0 77.0% *2.9 0.46 0.45

movie-reviews 2 2 000 10 382 28 cos 71.1% 75.7% 4.07 0.05
24. PaBo NICDM 72.0% 0.9 76.0% 0.3 1.22 0.07

MP 71.8% 0.7 76.7% 1.0 0.36 0.07

dexter 2 300 20 000 161 cos 80.3% 80.3% 4.22 0.10
25. UCI NICDM 84.3% 4.0 86.0% *5.7 2.02 0.13

MP 83.0% 2.7 90.0% *9.7 0.58 0.13

gisette 2 6 000 5 000 149ℓ2 96.0% 96.3% 4.48 0.16
26. UCI NICDM 97.2% *1.2 98.1% *1.8 0.78 0.20

MP 97.4% *1.4 97.9% *1.6 0.34 0.20

splice (sc) 2 1 000 60 27 ℓ2 69.6% 69.4% 4.55 0.07
27. LibSVM NICDM 73.3% *3.7 79.3% *9.9 1.51 0.11

MP 72.4% 2.8 77.2% *7.8 0.48 0.10

mini-newsgroups 20 2 000 8 811 188 cos 64.4% 65.6% 5.14 0.47
28. UCI NICDM 67.2% *2.8 68.5% *2.9 1.32 0.52

MP 67.7% *3.3 68.4% *2.8 0.60 0.57

dorothea 2 800 100 000 201ℓ2 90.6% 90.2% 12.91 0.21
29. UCI NICDM 92.2% 1.6 93.0% *2.8 11.72 0.21

MP 91.5% 0.9 93.1% *2.9 1.66 0.20

c1ka-twitter 17 969 49 820 46 cos 31.9% 26.6% 14.63 0.08
30. CP NICDM 47.8% *15.9 53.0% *26.4 2.94 0.33

MP 49.0% *17.1 50.8% *24.2 1.79 0.16

Table 2: Evaluation results ordered by ascending hubness (Sk=5) of the original distance space.
This table reports data sets with large hubness. Each evaluated data set (Name/Src) is
described by its number of classes (Cls.), its size (n), its extrinsic (d) and intrinsic (dmle)
data dimension and the distance measure used (Dist). ColumnsCk report the classification
accuracies at a givenk, the respective adjacent column+/- the difference in classification
accuracy between the original distances and NICDM/MP (in percentage points), column
IGK the Goodman-Kruskal Index. See Section 4.1 for an explanation of the individual
benchmarks.
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Figure 5: Improvements in accuracy (absolute percentage points) and hubness evaluated withk= 1.
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Figure 6: Improvements in accuracy (absolute percentage points, significant differences marked
with an asterisk) and hubness evaluated withk= 5.
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Figure 7: Percentage of symmetric neighborhood relations atk = 5 (above) andk = 10% (below)
of the respective collection size.

well balanced distribution of nearest neighbors. The impact of MP and NICDM on the hubness per
data set is plotted in Figures 5 and 6 (right hand sides). It can be seen that both MP and NICDM
lead to lower hubness (measured forSk=1,5) compared to the original distances. The effect is more
pronounced for data sets having large hubness values according to theoriginal distances.11

11. A notable exception is data set 29 (‘dorothea’) where the reduction inhubness is not so pronounced. This may be
due to the extremely unbalanced distribution of its two classes (9:1).
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More positive effects in the distances can also be seen in the increase of concordant (see Sec-
tion 4 for the definition) distance quadruples indicated by higher Goodman-Kruskal index values
(IGK). This index improves or remains unchanged for 27 out of 30 data sets in the case of using MP.
The effect is not so clear for NICDM, which improves the index or leavesit unchanged for only 17
out of 30 data sets. The effect of NICDM onIGK is especially unclear for data with low hubness
(data sets 1–17).

Finally we also checked whether both MP and NICDM are able to raise the percentage of sym-
metric neighborhood relations. Results fork = 5 andk set to 10% of the collection size (denoted
by k = 10%) are shown in Figure 7. As can be seen, the symmetry in the nearest neighbors for all
data sets increases with both MP and NICDM. For NICDM there are two cases (data set 13 and 16)
where the neighborhood symmetry does not increase. The average percentage of symmetric neigh-
borhoods across all data sets fork= 5 is 46% for the original distances, 69% for MP, and 70.8% for
NICDM. The numbers fork= 10% are 53% (original), 73.7% (MP), and 71.1% (NICDM).

4.4 Approximations

The general definition of MP (Definition 2, Section 3.2.1) allows for more specific uses if the under-
lying distribution of distances is known. All experiments conducted up until now use MP with the
all-purpose empirical distribution. This section evaluates the use of different distributions in MP.
Specifically, we will compare a Gaussian and a Gamma modeling to using the empirical distribu-
tion. For the two selected distributions, parameter estimation is straightforward (see Section 3.2.1).
In case of the Gaussian, we will compute MP as it was defined. In our experiments this configura-
tion will be denoted and referenced with ‘MP (Gauss)’. As this variant involves computing a joint
distribution in every step and this is expensive to calculate, there is no advantage to the original
MP. Where things get interesting from a computational point of view, is usingMP and assuming
independence (MPI , see Equation 3). In this case computing the joint distribution can be omitted.
In our experiments we use the Gamma (denoted with, ‘MP (i.Gamma)’) and Gauss(denoted with
‘MP (i.Gauss)’) distribution with MP assuming independence.

Figure 8 plots the result of this experiment in the same way as we have done in the previous
section. We compare the decrease/increase of classification accuraciesand hubness atk= 5. Look-
ing at the results, we can see that all methods seem to perform equally in termsof reducing hubness
and increasing classification accuracies. More importantly, we notice that the simple variant (‘MP
(i.Gauss)’), which assumes a Gaussian distribution of distances and independence, performs simi-
larly to all other variants.

This leads to the next experiment where we compare MP to a very simple approximation MPS

(see Section 3.2.2). As discussed in Section 3.2.2, assuming a Gaussian or Gamma distance distri-
bution requires only a small sample size (S= 30) for a good estimate of the distribution parameters.
Paired with the already evaluated simplification of MP assuming independence when computing
the joint probability, MP is ready to be used instantly with any data collection. Figure 9 shows the
results of a comparison of MPS to MP. The classification accuracies are averages over ten approx-
imations, that is, based on using ten times thirty randomly drawn data points for every data set.
As can be seen, accuracy results are very comparable. We recordedthree statistically significantly
different results for MPS using the approximative Gamma and Gauss variant (data sets 2, 10, 21,
McNemar’s test,df = 1, α = .05 error probability). We also notice that with a sample size ofS= 30
the decrease in hubness is not as pronounced for MPS as for MP.
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Figure 8: Comparison of different distance distributions in MP in terms of classification rates and
hubness.
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Figure 9: Improvements in accuracy (absolute percentage points, significant differences marked
with an asterisk) and hubness evaluated withk= 5 for MP (black) and its approximative
variant MPS (gray).
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4.5 Further Evaluations and Discussion

The previous experimental results suggest that the considered distancescaling methods work well
as they tend to reduce hubness and improve the classification/retrieval accuracy. In the following
three experiments we examine the scaling methods on artificial data as well as real data in order to
investigate the following three questions:

1. Does NICDM/MP work by effectively reducing the intrinsic dimensionality ofthe data?

2. What is the impact of NICDM/MP on hubs and orphans?

3. Is the changing role of hubs responsible for improved classification accuracy?

The artificial data used in the experiments is generated by randomly sampling i.i.d.high-dimensional
data vectors (n= 1000) in the hypercube[0,1]d from the standard uniform distribution. We use the
Euclidean distance function and MP with the empirical distribution in all experiments.

4.5.1 DIMENSIONALITY

As we have already shown that hubs tend to occur in high dimensional spaces, the first experiment
examines the consequential question if the scaling methods actually reduce theintrinsic dimension-
ality of the data. In order to test this hypothesis, the following simple experimentwas performed:
We increase the dimensions of artificial data (generated as described above) to create high hubness,
and measure the intrinsic dimensionality of the data spaces before and after scaling the distances
with NICDM/MP.

We start with a low data dimensionality (d = 5) and increase the dimensionality to a maximum
of d = 50. In each iteration we measure the hubness of the data and its intrinsic dimensionality.
The maximum likelihood estimator proposed by Levina and Bickel (2005) is used to estimate the
intrinsic dimensionality of the generated vector spaces.

In Figure 10a we can see that a vector space dimension as low as 30 already leads to a distance
space with very high hubness (Sk=5 > 2). We can further see that NICDM/MP are able to reduce
the hubness of the data spaces as expected. Figure 10b shows the measured intrinsic dimensionality
of the original data. As anticipated it increases with its embedding dimensionality.However, to
measure the intrinsic dimensionality of the data spaces created by MP and NICDM, we first have to
map their distance space to a vector space. We perform this vector mapping using multidimensional
scaling (MDS), doubling the target dimensionality to ensure a good mapping.

Figure 11 shows the results. For verification purposes, we (i) also map theoriginal distance
space with MDS and (ii) re-compute the hubness for the new data spaces (Figure 11a). Figure 11b
finally compares the measured intrinsic dimensionality. We can clearly see that neither MP or
NICDM decreases the intrinsic dimensionality notably. In none of the experiments does the esti-
mated intrinsic dimensionality of the new distance space fall below the one measured in the original
space.

4.5.2 IMPACT ON HUBS/ORPHANS

In the second experiment, we evaluate the question of what exactly happens to the hub and anti-hub
(orphan) objects. Do hubs, after scaling the distances, still remain hubs (but ‘less severely’ so), or do
they stop being hubs altogether? To look into this, we repeatedly generate a random, artificial, and
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Figure 10: Increasing the dimensionality of artificially generated random data. Measuring (a) hub-
ness of the original and scaled data, (b) the intrinsic dimensionality of the original data.
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Figure 11: A vector space mapping of the distance spaces generated in Figure 10 allows to compare
the intrinsic dimensionality of the original, MP, and NICDM data-spaces. No decrease
of the intrinsic data dimensionality by using NICDM/MP can be observed.

high-dimensional (d = 50) data sample to (i) track hub and anti-hub objects and (ii) compute their
k-occurrence (Nk) in the original space and in the distance spaces created after applying MPand
NICDM. We define ‘hub’ objects as objects with ak-occurrence in the nearest neighbors greater than
5k and ‘orphan’ objects as having ak-occurrence of zero (k = 5). The experiment is repeated 100
times and for each iteration the observed mean k-occurrence of hubs/orphans is plotted in Figure 12.

Looking at the figure we can confirm that for the two studied cases (hubs/orphans) a weakening
of the effects can be observed: after scaling the distances, hubs do not occur as often as nearest
neighbors any more, while orphans re-appear in some nearest-neighbor lists. Thek-occurrence of
all other objects stays constant. Another observation is that in no instance of the experiment do hubs
become orphans or orphans become hubs, as the measuredNk=5 never cross for the two classes.
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Figure 12: The k-occurrence (Nk=5) of hub and orphan data points before and after applying any of
the scaling methods (NICDM, MP). Orphans re-appear in the nearest neighbor lists and
the strength of hubs is reduced.

4.5.3 IMPACT OF HUBS/ORPHANS

In the final experiment we examine the increase in classification accuracieswe observed previously
when using NICDM or MP on the high dimensional machine learning data sets. To learn where
the increase in classification accuracy came from, we distinguish between hubs, orphans, and all
other objects. For each of the three classes we compute the so-called ‘badness’ (BNk=5) as defined
by Radovanovíc et al. (2010). Badness of an objectx is the number of its occurrences as nearest
neighbor at a givenk where it appears with a different (that is, ‘bad’) class label. As this experiment
makes only sense in collections with more than one class showing high hubness, we select machine
learning data sets with high hubness ofSk=5 > 2 from the 30 previously used databases. Table 3
documents the results of this experiment on the nine selected data sets.

For each collection the table shows the absolute number of hubs, orphans,and all other objects
in the original data space. We then compute their badness before (columnsOrig.) and after applying
MP and NICDM. It can be clearly seen that indeed in each of the tested collections the badness of
hubs decreases noticeably. In fact, on averageBNk=5 decreases more than 10 percentage points
from 46.3% in the original space to 35.6% (NICDM) and 35.3% (MP). Another visible effect is
that orphans re-appear in the nearest neighbor lists (see previous experiment, Figure 12) with an
average badness of 36.5% (NICDM) and 35.1% (MP). The measured badness of orphan objects is
comparable to the values reported for hubs, but is still notably higher than the numbers computed
for the rest of the objects (‘Other’). The badness of all other objects tends to stay the same: In three
cases the badness increases slightly, in all other cases a slight decrease in badness can be observed.
On average, badness decreases from 29.3% to 28.4% for both methods (MP and NICDM).

4.6 Summary of Results

Our main result is that both global (MP) and local (NICDM) scaling show very beneficial effects
concerning hubness on data sets that exhibit high hubness in the originaldistance space. Both
methods are able to decrease the hubness, raise classification accuracy, and improve other indicators
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Hubs, BNk=5 (%) Orphans, BNk=5 (%) Other, BNk=5 (%)

Data Set # Orig. NICDM MP # Orig. NICDM MP # Orig. NICDM MP

c1ka-twitter 13 83.5 54.0 55.7540 / 59.3 59.2 416 46.2 47.9 50.1
dorothea 19 10.2 9.7 6.8 730 / 10.4 10.6 51 8.6 7.1 4.9
mini-newsgroups 38 67.2 62.2 60.7304 / 45.6 43.5 1 658 42.2 41.5 41.6
splice (sc) 28 36.5 29.3 28.6289 / 31.8 30.9 683 35.0 31.5 31.7
gisette 49 18.9 10.9 9.8 635 / 7.9 8.1 5316 4.7 4.0 3.9
dexter 11 44.3 27.9 28.4 80 / 33.5 30.5 209 18.2 18.1 17.7
movie-reviews 50 37.5 35.4 36.2293 / 36.0 36.3 1 657 31.5 32.0 32.3
ismir2004 10 50.3 27.8 27.3120 / 44.2 38.0 599 25.7 24.4 25.0
ballroom 12 67.9 62.8 63.8 148 / 59.5 58.6 538 51.6 49.0 48.3

Average (%-points): 46.3 35.6 35.3 / 36.5 35.1 29.3 28.4 28.4

Table 3: Relative badness (BNk=5) of hub objects (Nk=5 > 5k), orphan objects (Nk=5 = 0), and all
other objects. Data sets withSk=5 > 2.

like percentage of concordant distance quadruples or symmetric neighborhood relations. In case of
MP, its approximation MPS is able to perform at equal level with substantially less computational
cost (O(n), as opposed toO(n2) for both MP and local scaling). For data sets exhibiting low
hubness in the original distance space, improvements are much smaller or non-existent, but there is
no degradation of performance.

We have also shown that while MP and NICDM reduce hubness, which tends to occur as a
consequence of high dimensional data, both methods do not decrease theintrinsic dimensionality
of the distance spaces (at least for the type of data and measure of intrinsic dimensionality used in
our experiments). By enforcing symmetry in the neighborhood of objects, both methods are able to
naturally reduce the occurrence of hubs in nearest neighbor lists. Interestingly, at the same time as
the occurrence of hubs in nearest neighbor lists decreases, hubs also lose their badness in terms of
classification accuracy.

5. Mutual Proximity and Content-Based Music Similarity

This section presents an application where we can use Mutual Proximity, its approximation MPS

(Section 3.2.2) and a linear combination of multiple similarity measures (Section 3.2.3)to improve
the retrieval quality of the similarity algorithm significantly. We chose to include thisexample as it
demonstrates how MPS with all its aspects introduced above can improve the quality of a real world
application: the FM4 Soundpark.

The FM4 Soundpark is a web platform run by the Austrian public radio stationFM4, a sub-
sidiary of the Austrian Broadcasting Corporation (ORF).12 The FM4 Soundpark was launched in
2001 and has gained significant public attention since then. Registered artists can upload and present
their music free of charge. After a short editorial review period, new tracks are published on the
front-page of the website. Older tracks remain accessible in the order of their publication date and
in a large alphabetical list. Visitors of the website can listen to and download all the music at no
cost. The FM4 Soundpark attracts a large and lively community interested in upand coming music,

12. FM4 Soundpark can be found athttp://fm4.orf.at/soundpark.
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Figure 13: The FM4 Soundpark music player web interface.

and the radio station FM4 also picks out selected artists and plays them on terrestrial radio. At the
time of writing, there are more than 11 000 tracks by about 5 000 artists listed in the on-line catalog.

Whereas chronological publishing is suitable to promote new releases, older releases tend to
disappear from the users’ attention. In the case of the FM4 Soundpark this had the effect of users
mostly listening to music that is advertised on the front-page, and therefore missing the full musical
bandwidth. To allow access to the full database regardless of publication date of a song, we imple-
mented a recommendation system using a content-based music similarity measure (see Gasser and
Flexer, 2009 for a more detailed discussion of the system).

The user interface to the music recommender has been implemented as an AdobeFlash-based
MP3 player with integrated visualization of the five songs most similar to the one currently playing.
This web player can be launched from within an artist’s web page on the Soundpark website by
clicking on one of the artist’s songs. Additionally to offering the usual player interface (start, stop,
skipping forward/backward) it shows songs similar to the currently playingone in a text list and
in a graph-based visualization (see Figure 13). The similar songs are retrieved by using an audio
similarity function.

The graph visualization displays an incrementally constructed nearest neighbor graph (number
of nearest neighbors = 5).

5.1 Similarity

The distance function used in the Soundpark to quantify music similarity was described by Pampalk
(2006). To compute a similarity value between two music tracks (x, y), the method linearly combines
rhythmic (dr ) and musical timbre (dt) similarities into a single general music similarity (d) value. To
combine the different similarities, they are normalized to zero-mean and unit-variance using static
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normalization values (µr /σr , µt /σt) precomputed from a fixed training collection:

d(x,y) = 0.3
dr(x,y)−µr

σr
+0.7

dt(x,y)−µt

σt
. (4)

5.2 Limitations

The above algorithm for computing music similarity creates nearest neighbor lists which exhibit
very high hubness. In the case of the FM4 Soundpark application, whichalways displays the top-5
nearest neighbors of a song, a similarity space with high hubness has an immediate negative impact
on the quality of the results of the application. High hubness leads to circular recommendations and
to the effect that some songs never occur in the nearest neighbor lists atall—hubs push out other
objects from thek= 5 nearest neighbors. As a result of high hubness only 72.63% of the songs are
reachable in the recommendation interface using the standard algorithm, that is, over a quarter of
songs can never be reached in the application (more details are discussedin the next section).

In the following, we show that MP can improve this considerably. We use MP with two of the
above mentioned aspects: (i) the linear combination of multiple similarity measures to combine
timbre and rhythm similarities, and (ii) the approximation of the MP parameters, as computing all
pairwise similarities would be highly impractical in a collection of this size.

5.3 Evaluation and Results

To evaluate the impact of MPS on the application, we use MPS in the linear combination of the
rhythmicdr and timbredt similarities:

dMPS(x,y) = 0.3MPS=30(dr(x,y)+0.7MPS=30(dt(x,y)),

and compare the result to the standard variant (Equation 4) of the algorithm.Table 5 shows the
results of the comparison (including a random baseline algorithm). As with the machine learning
data sets evaluated previously, we observe that the hubnessSk=5 (which is particularly relevant for
the application) decreases from 5.65 to 2.32. This is also visible in thek-occurrence (Nk) of the
biggest hub object,Nk

max, which fork= 5 decreases from 242, with the standard algorithm, to 70.
We also compute theretrieval accuracy Rk (the average ratio of song genre labels matching the

query object’s genre) fork = 1,5,10. For a query songx and a list of recommendationsi = 1. . .k,
the retrieval accuracy over their multiple genres is computed as:

Rk(x) =
1
k

k

∑
i=1

|Genres(x)∩Genres(i)|
|Genres(x)∪Genres(i)| .

Similarly to the increase in classification accuracies for the machine learning data sets,Rk increases
in all configurations. The music genre labels used in this evaluations originatefrom the artists who
uploaded their songs to the Soundpark (see Table 4 for the music genres and their distribution in the
collection).

The decrease of hubness produced by MPS leads to a concurrent increase in the reachability
of songs in the nearest neighbor graphs. Instead of only 72.6%, 86.2%of all songs are reachable
via k = 5 nearest neighbor recommendation lists. If the application were to randomly sample 5
recommendations from thek= 10 nearest neighbors, the reachability with MPS would even increase
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Pop Rock Electronica Hip-Hop Funk Reggae

37.6% 46.3% 44.0% 14.3% 19.7% 5.3%

Table 4: Music genre/class distribution of the songs in the FM4 Soundpark collection used for
our experiments. Each artist can assign a newly uploaded song to one or more of these
predefined genres. There are a total of 11 229 songs in our collection snapshot. As every
song is allowed to belong to more than one genre, the percentages in the table add up to
more than 100%.
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Figure 14: Nk=5-occurrences of songs in the nearest neighbors for (a) the standard algorithm, (b)
the linear combination using MPS, and (c) random distances.

to 93.7% (from 81.9%) while the retrieval accuracyRk for k= 10 would only slightly drop compared
to k= 5.

Figure 14 shows a histogram plot of theNk=5 occurrence of songs for the standard algorithm
and MPS. The decrease of skewness is clearly visible as the number of songs thatare never rec-
ommended drops from about 3000 to 1500—thus a more even distribution of objects in the nearest
neighbors is achieved. The positive effects of using MPS in this application are thus clearly visible:
we obtain an improvement of retrieval accuracy and a decrease of hubness, paired with an increase
of reachability in the nearest neighbors.

6. Conclusion

We have presented a possible remedy for the ‘hubness’ problems, whichtend to occur when learning
in high-dimensional data spaces. Considerations on the asymmetry of neighbor relations involving
hub objects led us to evaluate a recent local scaling method, and to proposea new global variant
named ‘mutual proximity’ (MP). In a comprehensive empirical study we showed that both scaling
methods are able to reduce hubness and improve classification accuracy as well as other perfor-
mance indices. Local and global methods perform at about the same level.Both methods are fully
unsupervised and very easy to implement. Our own global scaling variant MP presented in this pa-
per offers the additional advantage of being easy to approximate for large data sets which we show
in an application to a real-world music recommendation service.
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Characteristic Standard MPS (Random)

Retrieval AccuracyRk=1 51.9% 54.5% 29.0%
Retrieval AccuracyRk=5 48.2% 50.1% 28.5%
Retrieval AccuracyRk=10 47.1% 48.6% 28.4%

HubnessSk=5 5.65 2.31 0.46
Maximum Hub sizeNk=5

max 242 70 17
Reachabilityk= 5 72.6% 86.2% 99.4%

HubnessSk=10 5.01 2.14 0.36
Maximum Hub sizeNk=10

max 416 130 25
Reachabilityk= 10 81.9% 93.7% 99.9%

Table 5: Evaluation results of the FM4 Soundpark data set comparing the standard method to MPS.
A random algorithm is added as baseline.

Our results indicate that both global and local scaling show very beneficial effects concerning
hubness on a wide range of diverse data sets. They are especially effective for data sets of high
dimensionality which are most affected by hubness. There is only little impact but no degradation
of performance with data sets of low dimensionality. It is our hope that this empirical study will
be the starting point of more theoretical work and consideration concerning the connection between
hubness, asymmetric neighbor relations, and the benefits of similarity space transformations.

The main evaluation scripts used in this work are publicly available to permit reproduction of
our results.13
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