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ABSTRACT
This paper aims at leveraging microblogs to address two
challenges in music information retrieval (MIR), similarity
estimation between music artists and inferring typical lis-
tening patterns at different granularity levels (city, country,
global). From two collections of several million microblogs,
which we gathered over ten months, music-related informa-
tion is extracted and statistically analyzed. We propose
and evaluate four co-occurrence-based methods to compute
artist similarity scores. Moreover, we derive and analyze
culture-specific music listening patterns to investigate the
diversity of listening behavior around the world.

Categories and Subject Descriptors
I.7.m [Document and Text Processing]: Miscellaneous—
microblog mining ; H.3.1 [Information Storage and Re-
trieval]: Content Analysis and Indexing—indexing meth-
ods; H.3.3 [Information Storage and Retrieval]: Infor-
mation Modeling—co-occurrence analysis

General Terms
Algorithms, Measurement

Keywords
social media mining, music information retrieval, similarity
measurement, evaluation

1. INTRODUCTION
The large and ever growing amount of user-generated con-

tent in today’s social media platforms constitutes a tremen-
dously wealthy, albeit noisy source for various data mining
tasks. In particular, microblogging has encountered a con-
siderable gain in popularity during the past few years as
it provides an easy way for everyone to report on activi-
ties and thoughts. Today’s most popular microblogging ser-
vice Twitter [5] has more than 200 million registered users
[3] who are creating a billion posts every week [1] (as of
March/April 2011). Twitter thus represents a rich data
source for text-based information extraction (IE) and infor-
mation retrieval (IR).
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Music is omnipresent on the (social) web as it plays an
important role in many human lives. Everybody enjoys lis-
tening to his favorite tunes, and many people share their
opinions about songs, artists, or latest album releases. Some
even share their own versions of favored music videos. Dig-
ital music distribution and consumption are also important
economic factors, which is demonstrated by the current suc-
cess of music streaming services such as Spotify [4].

Given the importance both social media and music con-
sumption play for many people, this work addresses the fol-
lowing research questions:

1. Can we create a similarity measure for music artists
based on microblogs?

2. Are there typical listening patterns encoded in tweets?
If so, do they differ among different places in the world?
What can we learn about differences between countries
or cities?

Elaborating music similarity measures that reflect resem-
blance perceived by humans is one of the big challenges in
music information retrieval (MIR). These similarity mea-
sures enable applications such as music recommender sys-
tems [10, 16], automated playlist generators [36, 38], or in-
telligent user interfaces to music collections [37, 32]. Com-
putational features for music similarity calculation can be
broadly categorized into content-based, music context-based,
and user context-based. While content-based feature extrac-
tion techniques derive the representation of a music item
from the audio signal itself [15], music context-based ap-
proaches make use of data that is not encoded in the sig-
nal [44], for instance, the performer’s political background,
the meaning of a song’s lyrics, images of album covers, or co-
occurrence information derived from playlists. Both content-
based and music context-based techniques to model musical
similarity are relatively well researched in terms of publica-
tion numbers, although they are still far from being highly
accurate. In contrast, feature extraction and similarity mea-
surement approaches that take into account the user’s con-
text are relatively sparse throughout the scientific literature.
An overview of user context features likely to be useful for
MIR tasks is presented in [45].

The work at hand is one of the first to tackle the intersec-
tion between music context and user context since microblog
data is available at the level of individual users, but can also
be aggregated to model similarity at the city-, country-, or
global level. The similarity measurement models proposed
here are therefore capable of reflecting music perception at



different scopes, which is a promising path to follow when
aiming at creating personalized retrieval models [53].

The remainder of the paper is organized as follows. Sec-
tion 2 reviews related literature on microblog mining and
text-based similarity. Section 3 reports on the acquisition
of music-related, geospatialized tweets and presents results
of preliminary statistical analyses. Our approaches to in-
fer similarity between artists from microblogs are presented
in Section 4, together with an evaluation. In Section 5 we
then address the second research question, which is analyz-
ing geographical differences in listening patterns around the
world. Eventually, Section 6 summarizes the main findings
and points to some future research directions.

2. RELATED WORK
Related literature basically falls into two groups: text-

based similarity measurement and microblog mining. Whereas
the former has a long tradition, ranging back several decades,
the latter is a rather young research field.

2.1 Text-based Similarity Measurement
There exists a wide range of literature on modeling text

documents according to the bag-of-words principle using
vector space representations, e.g. [9, 40, 35]. Since elabo-
rating on all publications related to the discipline of text-IR
is out of this article’s scope, we focus on work dealing with
text-IR in the context of music and multimedia retrieval on
the Web, as this context is closely related to the work at
hand.

Text data in the multimedia domain generally constitutes
context information or contextual data, opposed to content-
based features directly extracted from the media items. De-
riving term feature vectors from Web pages for the purpose
of music artist similarity estimation was first undertaken in
[22]. Cohen and Fan automatically extract lists of artist
names from Web pages, which are found by querying Web
search engines. The resulting pages are then parsed ac-
cording to their DOM tree, and all plain text content with
minimum length of 250 characters is further analyzed for
occurrences of entity names. Term vectors of co-occurring
artist names are then used for artist recommendation. Us-
ing artist names to build term vector representations, whose
term weights are computed as co-occurrence scores, is an
approach also followed later in [54, 46]. In contrast to Co-
hen and Fan’s approach, the authors of [54, 46] derive the
term weights from search engine’s page count estimates and
suggest their method for artist recommendation.

Automatically querying a Web search engine to determine
pages related to a specific topic is a common and intuitive
task, which is therefore frequently performed for data acqui-
sition in IE research. Examples in the music domain can be
found in [52, 26], whereas [19, 20, 31] apply this technique
in a more general context.

Building term feature vectors from term sets other than
artist names is performed in [52], where Whitman and Law-
rence extract different term sets (unigrams, bigrams, noun
phrases, artist names, and adjectives) from up to 50 artist-
related Web pages obtained via a search engine. After down-
loading the pages, the authors apply parsers and a part-of-
speech (POS) tagger [14] to assign each word to its suited
test set(s). An individual term profile for each artist is then
created by employing a version of the TF·IDF measure. The
overlap between the term profiles of two artists, i.e., the sum

of weights of all terms that occur in both term profiles, is
then used as an estimate for their similarity.

Extending the work presented in [52], Baumann and Hum-
mel [11] introduce filters to prune the set of retrieved Web
pages. First, they remove all Web pages with a size of more
than 40 kilobytes (after parsing). They also try to filter
out advertisements by ignoring text in table cells comprising
more than 60 characters, but not forming a correct sentence.
Finally, Baumann and Hummel perform keyword spotting in
the URL, the title, and the first text part of each page. Each
occurrence of the initial query parts (artist name, “music”,
and “review”) contributes to a page score. Pages that score
too low are filtered out.

Knees et al. present in [30] an approach similar to [52].
Unlike Whitman and Lawrence who experiment with differ-
ent term sets, Knees et al. use only one list of unigrams. For
each artist, a weighted term profile is created by applying
a TF·IDF variant. Calculating the similarity between the
term profiles of two artists is then performed using the cosine
similarity. Knees et al. evaluate their approach in a genre
classification setting using as classifiers k-Nearest Neighbor
(kNN) and Support Vector Machines (SVM) [50].

Other approaches derive term profiles from more specific
Web resources. In [17], for example, Celma et al. propose a
music search engine that crawls audio blogs via RSS feeds
and calculates TF·IDF features. Hu et al. in [27] extract
TF -based features from music reviews gathered from Epin-

ions.com [25]. In [42] Schedl extracts user posts associated
with music artists from the microblogging service Twitter

and models term profiles using term lists specific to the mu-
sic domain. Although one of the goals (artist similarity mea-
surement) and the data source (microblogs) in [42] resemble
the work at hand, [42] bases the similarity computation on
TF·IDF representations of music artists, whereas the ap-
proaches reported in this paper derive a similarity estimate
from co-occurrence information.

2.2 Microblog Mining
With the advent of microblogging a huge, albeit noisy data

source became available. Literature dealing with microblogs
can be broadly categorized into works that study human
factors or properties of the Twittersphere and works that
exploit microblogs for information extraction and retrieval
tasks.

As for the former, Teevan et al. [49] analyze query logs
to uncover differences in search behavior between users of
classical Web search engines and users looking for informa-
tion in microblogs. They found that Twitter queries are
shorter and more popular than bing [12] queries on average.
Furthermore, microblogs are more often sought for people,
opinions, and breaking news. In terms of query formulation,
reissuing the same query can be more frequently observed
in microblog search. In Web search, by contrast, modifying
and extending a query is very popular.

Java et al. [28] study network properties of the microbl-
ogosphere as well as geographical distributions and inten-
tions of Twitter users. The authors report that Twit-

ter is most popular in North America, Europe, and Asia
(Japan), and that same language is an important factor
for cross-connections (“followers” and “friends”) over conti-
nents. Employing the HITS algorithm [29] on the network
of “friend”-relations, Java et al. further derived user inten-
tions from structural properties. They identified the fol-



lowing categories: information sharing, information seeking,
and friendship-wise relationships. Analyzing the content of
Twitter posts, the authors distilled the following intentions:
daily chatter, conversations, sharing information/URLs, and
reporting news.

In a recent study, Kwak et al. perform a topological anal-
ysis of the Twitter network [33]. The authors report a low
level of reciprocity, i.e., only 22% of the connections be-
tween users are bidirectional. The average path length was
found to be only four, which is surprisingly small for a net-
work the size of the Twittersphere and considering the di-
rectional network structure. Moreover, a moderate level of
homophily, i.e., a higher likelihood for connections between
similar people than between dissimilar people, was discov-
ered when measuring similarity in terms of geographic loca-
tion and user popularity. In addition, Kwak et al.’s study
indicates that information diffusion after the first retweet is
very fast.

Work related to content mining of microblogs includes the
following: Cheng et al. propose a method to localize Twitter
users based on spatial cues (“local” words) extracted from
their tweets’ content [18]. To this end, in a first step several
classifiers are trained to identify words with a strong geospa-
tial meaning. In order to deal with the sparsity in the dis-
tribution of these cues, different smoothing approaches, e.g.,
taking into account neighboring cities when constructing the
term representation of a city, are applied subsequently. In
an experiment conducted on a set of tweets posted within
the USA, Cheng et al.’s approach placed more than a half of
the users within a 100-mile-radius of their correct location.

Making use of the fact that tweets are a good source for
up-to-date information and breaking news, Dong et al. pro-
pose in [23] an approach to identify fresh URLs in Twitter

posts. To this end, the authors investigate content-based
features extracted from the tweets, an authority score com-
puted for each user, and Twitter-specific statistical features,
such as number of retweets or number of users that replied
to a message containing a tiny URL. They show that these
features can be used to improve both recency ranking and
relevance ranking in real-time Web search. Another work
that aims at improving ranking can be found in [24]. Duan
et al. propose a novel ranking strategy for tweet retrieval.
To this end, they investigate different feature sets, includ-
ing content-based features, Twitter-specific features, and
authority scores of users (followers, retweeters, mentioners).
Using a learning to rank algorithm, the authors found that
the best-performing features are authority scores, length of
a tweet, and whether the tweet contains a URL.

An approach to classifying tweets can be found in [48].
Sriram et al. describe each tweet by an eight-dimensional fea-
ture vector comprising the author of the post and seven bi-
nary attributes indicating, for example, occurrence of slang
words, currency and percentage signs, or the use of capi-
talization and repeated characters. Sriram et al.’s feature
set outperformed the standard bag-of-words approach using
a Näıve Bayes classifier to categorize tweets into the five
classes news, events, opinions, deals, and private messages.

Armentano et al. present in [7] a recommender system
that suggests potentially interesting users to follow based
on the similarity between tweets posted by the seed user
and tweets posted by a set of candidate users. To this end,
the authors create and investigate different user profiles, for
example, modeling the seed user via term frequencies of

his/her aggregate posts or of all of his/her followees. Re-
lated to Armentano et al.’s work, Weng et al. aim at identi-
fying influential twitterers for a given topic [51]. To this end,
they apply Latent Dirichlet Allocation (LDA) [13] to their
corpus of tweets. Subsequently, topical similarity between
twitterers is computed as the Jensen-Shannon divergence
between the distribution of the latent topics of the respec-
tive users. Further taking into account the link structure,
Weng et al. propose a ranking function for influential twit-
terers in each topic. Similar to [7], Weng et al. evaluate their
approach in a recommendation setting.

Microblogs have also been exploited for the purpose of
event and trend detection. Sakaki et al. propose semantic
analysis of tweets to detect earthquakes in Japan in real-
time [39]. A more general approach to automatically detect
events and summarize trends by analyzing tweets is pre-
sented by Sharifi et al. [47]. Another work on trend detec-
tion is [43], where Schedl exploits tweets for spatio-temporal
popularity estimation of music artists. Sankaranarayanan
et al. aim at capturing tweets that report on breaking news
[41]. They cluster the identified tweets according to their
TF · IDF weights and cosine similarity. Furthermore, each
cluster is assigned a set of geographic locations using both
spatial clues in the tweets themselves and explicit location
information as indicated by the twitterers.

3. DATA ACQUISITION AND ANALYSIS
Between May 2010 and March 2011 we crawled Twit-

ter for the hashtag #nowplaying (or its equivalent #NP)
in the postings since this hashtag has already been suc-
cessfully used in the context of spatio-temporal popular-
ity estimation in [43]. Our crawls were restricted to tweets
with geospatial information and to all cities > 500,000 in-
habitants (790 cities around the world were gathered from
World Gazetteer [6]). We included tweets within a radius
of 50 kilometers around the city center’s coordinates.
Between November 2010 and March 2011 we gathered a sec-
ond data set, focusing on tweets including #itunes, since
this hashtag is frequently used among users of Apple’s iTunes
and related programs. There also exists a popular plug-in
for Apple’s social network Ping that automatically tweets
iTunes listening activities using this very hashtag.

We were able to retrieve 9,928,817 tweets for #nowplay-

ing and 725,486 tweets for #itunes, respectively. We will
henceforth refer to these data sets simply as #nowplaying

and #itunes. If not explicitly mentioned, our analysis was
conducted on the larger data set (#nowplaying).

There exist, of course, tweets about music that do neither
include the hashtag #nowplaying, nor #itunes. Elaborat-
ing a more general, text-based tweet classifier that detects
microblogs about music will be part of future work.

3.1 Preprocessing
In order to use the crawled tweets for further processing

we had to map the tweets to artist names, which raises some
challenges. In a first attempt we tried to use a dictionary-
based text matching algorithm. However, this approach led
to many mis-classifications as parts of song titles or artist
names had been identified as artists, which was especially
true for common speech terms and first names. Addition-
ally, there is no fixed format for Twitter postings and sev-
eral tweets featuring the hashtags under consideration also
contain comments. Stopping [9] is not an option in this case



Table 1: Top 10 cities (number of tweets).
#nowplaying #itunes

city tweets city tweets
New York 126,952 New York 13,603
London 96,801 London 9,813
São Paulo 79,317 Los Angeles 9,030
Los Angeles 73,834 San Francisco 5,787
Amsterdam 66,021 San Jose 5,605
Guarulhos 58,453 Chicago 4,413
Osasco 57,512 Birmingham 3,869
São Bernardo 56,946 Toronto 3,363
Rotterdam 55,113 Hamilton 3,279
Mexico City 52,618 Baltimore 3,245

Table 2: Top 10 countries (number of tweets).
#nowplaying #itunes

country #tweets country #tweets
Brazil 725,389 USA 78,460
USA 673,839 Japan 30,932
Japan 458,558 Mexico 23,047
Mexico 419,584 Brazil 16,390
Indonesia 284,082 UK 15,134
South Korea 251,132 Canada 11,266
China 183,178 South Korea 8,652
UK 128,744 Australia 5,119
Netherlands 121,134 China 4,492
Venezuela 110,336 Germany 3,157

since it might introduce erroneous information into the artist
names.
To improve our matching algorithm we identified a number
of common patterns in the tweets, including “songtitle by
artistname”, “artistname – songtitle”, “#artistname”, etc.,
and we matched the potential artist names against a list of
110,588 known artists. The artist set is publicly available.1

We were able to identify 31,328 unique artists in 4,237,430
of the 9,928,817 tweets, each artist appearing between 1 and
38,335 (Rihanna) times (µ = 144.89, σ = 907.96, median =
12) in the #nowplaying data set. From the #itunes data
set we extracted 13,002 artists from 220,641 tweets (min =
1, max = 5,416 (The Beatles), µ = 17.52, σ = 94.54,
median = 3).
We were able to retrieve data from 766 (603) different cities
in 127 (107) countries. Tables 1 and 2 show the top-10 cities
and countries, respectively, in terms of the number of post-
ings.

3.2 Distribution of Play Counts
To assess whether the distribution of play counts, that is

the total number of each artist’s occurrences in the data set,
follows a power-law p(x) ∼ x−α for x ≥ xmin, we employ the
approach presented in [21], using Maximum Likelihood Esti-
mation (MLE). The estimated parameters of the power-law
model (significantly well) fitted to the data are as follows:

#nowplaying: α = 2.10, xmin = 697

#itunes: α = 2.01, xmin = 16

1http://www.cp.jku.at/people/schedl/datasets.html

Figure 1 visualizes the distribution of the playcounts for
both data sets (#nowplaying and #itunes).
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Figure 1: Distribution of artist playcounts.

4. SIMILARITY ESTIMATION
In order to estimate artist similarities we computed a co-

occurrence matrix X for artists listened to by the same
user. Element x(i, j) denotes the co-occurrence count be-
tween artists i and j. For each artist we found between
0 and 16,999 co-occurring artists (µ = 1,392, σ = 2,040,
median = 450) for #nowplaying and between 0 and 3,832
co-occurring artists (µ = 69.91, σ = 154.52, median = 15)
for #itunes. Due to space limitations, we will report on our
similarity estimation experiments for the #nowplaying data
set only.

4.1 Normalization
For the normalization of the co-occurrence matrices, which

eventually yields item-to-item similarity matrices, we evalu-
ated four different approaches (the first one simply computes
the relative frequency, algorithms two and three make use
of a popularity correction factor [52]):

1. sim(i, j) =
x(i, j)

occ(i)

2. sim(i, j) =
x(i, j)

occ(i)
·

(

1−
|occ(i) − occ(j)|

maxk occ(k)

)

3. sim(i, j) =
x(i, j)

min(occ(i), occ(j))
·

(

1−
|occ(i) − occ(j)|

maxk occ(k)

)

4. sim(i, j) =
x(i, j)

√

occ(i) · occ(j)

with occ(i) being the number of occurrences of artist i within
the set of tweets.

4.2 Evaluation
In a first step we evaluated the four artist similarity mea-

sures in a similar-artist-prediction setting, using the list of
top-ranked similar artists from last.fm [34] as ground truth.
As some artists appeared too infrequently in the data sets
to create a reliable similarity predictor, we had to define a
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Figure 2: Precision-recall-curves.

Table 3: R-precision for artist overlap.
normalization ≥ 50 tweets ≥ 500 tweets

method (6,885 artists) (1,524 artists)
normalization 1 0.1482 0.2919
normalization 2 0.1678 0.3381
normalization 3 0.1121 0.3282
normalization 4 0.1621 0.3930

minimum number of occurrences. 8,122 artists appeared in
at least 50 #nowplaying tweets, 1,524 in at least 500 #now-

playing tweets. We were able to retrieve our ground truth
for 6,885, respectively 1,137 of these artists. For the set
with a minimum of 50 tweets per artist, last.fm returned
between 2 and 93 similar artists (µ = 27.20, σ = 20.46,
median = 22), for the smaller set between 2 and 71 similar
artists (µ = 23.74, σ = 15.45, median = 21).

The R-precision [8] for the overlap in Table 3 shows that
the normalization algorithms 2 and 4 work best. However,
comparing the two data sets we see that the algorithms per-
form differently. A closer look at the precision-recall-curves
in Figure 2 shows that symmetric algorithms (3 and 4) have
a flatter curve, i.e., they lose less in precision while the
number of predictions increases. Figure 3 shows that for
the smaller data set (i.e., the more popular artists) sym-
metric algorithms perform relatively better, especially for
an increasing number of predictions. Among the symmetric
algorithms 4 always performs better than 3. For the asym-
metric algorithms we can see that the popularity factor in
algorithm 2 always leads to better results than the relative
frequency alone. The maximum F-measures achieved are
listed in Table 4 for both thresholds (50 and 500) for the
minimum number of artist occurrences. The column pred
indicates the number k of predicted similar artists, for which
this maximum F-measure was achieved.

In a next step we evaluated the rank proximity, predicting
the k most similar artists (l=number of artists in the ground
truth), and defining precision and recall equivalents using a
weighted rank proximity as follows:
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Figure 3: F-measure for number of predicted artists.

Table 4: Best F-measures for artist overlap.
normalization ≥ 50 tweets ≥ 500 tweets

method pred F pred F
normalization 1 54 0.1141 37 0.2722
normalization 2 39 0.1282 29 0.3163
normalization 3 49 0.1002 29 0.3116
normalization 4 52 0.1314 25 0.3666

prec(k) =
1

k
·

k
∑

i=1

(

1−
|rpred(ai)− rgt(ai)|

max(rpred(ai), rgt(ai))

)

rec(k) =
1

l
·

k
∑

i=1

(

1−
|rpred(ai)− rgt(ai)|

max(rpred(ai), rgt(ai))

)

If a predicted artist is not found in the ground truth, we
set a penalty of 0. Therefore, in contrast to the standard
definitions of precision and recall, the true positives in our
rank-proximity-formulation do not count as “one” if there
is an overlap, but only if the rank is correct as well. By
dividing the absolute rank difference by the maximum rank
in ground truth and prediction, we put a stronger penalty
on errors of top-ranked items. From Figures 4 and 5 we see
that normalization algorithm 4 again dominates over the
others and that the symmetric algorithms benefits from a
lower number of artists.

5. EXTRACTING GEOSPATIAL LISTENING
PATTERNS

The second objective of this work relates to extracting
geospatial listening patterns from microblogs, analyzing if
and in which way they differ among different parts of the
world and at different granularity levels, and eventually, in-
terpret these (presumable) differences. In the work at hand,
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we infer such listening patterns at the level of cities and
countries.

To determine typical listening patterns, we use genre in-
formation about artists to describe each city/country via a
genre distribution vector.2 Aggregating artists on the genre
level is necessary because the country-artist-matrix is too
sparse to allow for analyzing the listening patterns on the
artist level for most countries. Using the set of allmu-

sic’s [2] 18 major genres3, we retrieve the genre of each
artist a as the main genre given by allmusic’s artist page.

We define the listening pattern for a city or country c as
the relative frequencies music of each genre is listened to by
users within c. The elements of the 18-dimensional genre
distribution vector g

c for a city or country c are computed
as

g
c
i =

∑

a∈Gi
occa,c

∑

a∈A
occa,c

i = 1 . . . 18

where Gi denotes the set of artists assigned to genre i, occa,c
is the number of microblogs indicating listening behavior of
artist a in city or country c, and A is the set of all artists. We
use the relative frequency to account for different intensities
of microblogging activity, depending on the scope of interest.
Nevertheless, we discard cities or countries for which not
enough data is available to derive a reliable listening pattern.
To this end, we require at least 100 artist-user pairs in the

data set to make a prediction, i.e.,
∑

a∈A

occa,c ≥ 100.

In order to investigate to which extent the listening pat-
terns differ among different cities or countries c, we calculate
the standard deviation of their genre distribution vectors σc

over all genres (from the global mean genre distribution, tak-

2The approach is not restricted to the use of genres; other
term sets may feature moods, instruments, or styles.
3The used genres are avantgarde (av), blues (bl), celtic (ce),
classical (cl), country (co), easylistening (ea), electronica
(el), folk (fo), gospel (go), jazz (ja), latin (la), newage (ne),
rap (ra), reggae (re), rnb (rn), rock (ro), vocal (vo), and
world (wo).
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Figure 5: F-measure equivalence using rank proxim-
ity for number of predicted artists.

ing the arithmetic mean over the 18 dimensions to come up
with a single number). This allows us to determine the most
and least representative (or mainstream) twittering popula-
tion with respect to the average music listener on a global
scale.
The results at the country level are illustrated for data sets
#nowplaying and #itunes in Figures 6 and 7, respectively.
The first bar in each genre group represents the global mean
genre distribution, the subsequent two bars represent the
countries with lowest standard deviations, i.e., the most
mainstream countries, and the last two bars represent the
countries whose twitterers have most particular listening be-
haviors. When deriving listening patterns on the level of
individual cities, the most and least mainstream cities are
depicted in Figures 8 and 9, respectively, for sets #nowplay-
ing and #itunes.

We further compute global genre distribution vectors g#np

and g
#it for both data sets #nowplaying and #itunes, re-

spectively. Comparing these with the genre distribution vec-
tor of the ground truth g

GT – which is given by the relative
frequencies of artists in each genre among the total number
of artists in the data set – reveals some interesting differences
between the user group that tends to use #nowplaying and
the group that tends to use #itunes to tweet listening behav-
ior.4 Figure 10 depicts the genre distribution vectors g

GT ,
g
#np, and g

#it. It shows, for instance, that electronica,
rap, and rock are significantly more popular genres among
the #itunes tweeters, compared to their relative share in the
ground truth. The same holds for latin, rap, rnb, and rock
when focusing on the microbloggers that use #nowplaying

to communicate listening activities. On the other hand, al-
most all other genres are significantly less popular among
both user groups. The ℓ2 distance between g

GT and g
#np

is also larger (0.0996) than between g
GT and g

#it (0.0796),
which indicates a slightly less average music taste for the
#itunes listeners than for the #nowplaying tweeterers.

4The second one presumably consists foremost of listeners
who use Apple’s iTunes.
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Figure 6: Genre distributions for countries with most and least representative listening behavior, using data
set #nowplaying.
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Figure 7: Genre distributions for countries with most and least representative listening behavior, using data
set #itunes.
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Figure 8: Genre distributions for cities with most and least representative listening behavior, using data set
#nowplaying.
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Figure 9: Genre distributions for cities with most and least representative listening behavior, using data set
#itunes.
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Figure 10: Overall genre distributions given by the
ground truth, the #nowplaying and the #itunes sets.

6. CONCLUSIONS AND FUTURE WORK
We reported on mining social microblogs for music-related

information and showed that Twitter postings can be used
to derive similarity measures for artists. We compared dif-
ferent normalization approaches against similarity informa-
tion from last.fm for their overlap and their weighted rank
proximity. In addition, we derived music listening patterns,
represented as genre distribution vectors, at different gran-
ularities (city, country, global). We found that these listen-
ing patterns vary strongly for different cities and countries.
Moreover, the global patterns revealed a considerable dif-
ference between the data sets #nowplaying and #itunes in
relation to the mean global genre distribution given by the
ground truth.

We are currently preparing the feature data (in addition
to the meta data) for publication as we believe it repre-
sents a valuable source for the research community. Both
preprocessed data sets (#nowplaying and #itunes) will be
available shortly.5 As part of future work, we will inves-
tigate more elaborate disambiguation techniques for song
and artist names to improve accuracy of the similarity es-
timators. We believe that preprocessing could be improved
by adding track information, e.g., for the tweet “Satellite
– Lena”, both “Lena” and “Satellite” exist as known artist
names, and only additional track information can help to
identify “Lena” as the artist and “Satellite” as the track title
and not vice versa.
We will further investigate how similarity information de-
rived from microblog data compares to similarity estimation
techniques that exploit other data sources, such as the audio
signal, music-related web pages, or song lyrics.
Moreover,we plan to account for temporal dynamics in the
microblog data, which matches nicely our ultimate research
aim to elaborate personalized and user-aware music retrieval
and discovery systems that take into account different lev-
els of personalization (individual, peer group, city, coun-
try) [45].
The research at hand is also closely related to trend de-

5http://www.cp.jku.at/people/schedl/datasets.html

tection from social media sources. Given the large interest
the music industry and individual performers have to mon-
itor their success, we hence foresee more work leveraging
microblog data for this purpose.
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