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Intelligent structuring and exploration of digital
music collections

M. SCHEDL, E. PAMPALK, G. WIDMER

In this paper we present a general approach to the automatic content-based organization and visualization
of large digital music collections. The general methodology consists in extracting musically and
perceptually relevant patterns (‘features’) from the given audio recordings (e.g., mp3 files), using topology-
preserving data projection methods to map the entire music collection onto two-dimensional visualization
planes (possibly in a hierarchical fashion), and using a new display metaphor (the ‘Islands of Music’) to
display the inherent structure of the music collection to the user. It is shown how arbitrary meta-data can
be integrated into the visualization process, and how similarity according to different viewpoints can be
defined and exploited. The basic methodology is briefly described, three prototype systems are present-
ed, and a general discussion of the practical application possibilities of such technologies is offered.
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Intelligente Strukturierung und Exploration von digitalen Musiksammlungen.
Diese Arbeit präsentiert eine allgemeine Methodik zur automatischen inhaltsbasierten Strukturierung und
Visualisierung großer digitaler Musiksammlungen. Die Methode besteht aus dem Extrahieren musikalisch
und perzeptuell relevanter Muster (,Features‘) aus Audioaufnahmen (z. B. mp3-Files), der Projektion der
Daten und der Musiksammlung auf zweidimensionale (möglicherweise hierarchisch strukturierte)
Visualisierungsebenen mittels topologiererhaltender Projektionsmethoden und der Visualisierung der
resultierenden Strukturen mittels einer neuen graphischen Metapher (den so genannten ‚Islands of Music‘),
so dass die inhärente Struktur der Musiksammlung für den Benutzer sichtbar wird. Es wird auch gezeigt,
wie beliebige zusätzliche Metadaten in den Visualisierungsvorgang integriert und  verschiedene
Gesichtspunkte von (musikalischer) Ähnlichkeit definiert und mit einbezogen werden können. Der Beitrag
bietet eine kurze Beschreibung der Grundmethodik, präsentiert drei Softwareprototypen und diskutiert
dann die praktischen Anwendungsmöglichkeiten solcher Technologien.

Schlüsselwörter: intelligente Musikverarbeitung; musikalische Ähnlichkeit; automatische hierarchische
Strukturierung; Schnittstellen zu Musik

1. Introduction
Music exchange systems like Napster1 and peer-to-peer net-
works like Kazaa2, where users can easily share their music or
other data, have been gaining popularity over the past few
years. Thanks to Internet-based music stores like iTunes3, digi-
tal music distribution (DMD) is becoming an important economic
factor. According to a recent report4, the online music market in
Germany is growing by 25 percent per week.

Naturally, this leads to an increase in the number and size
of digital music collections and therefore to the necessity of in-
telligent strategies for searching in and browsing through such
music databases. At the moment, the standard approach is
text-based search, i.e., the user has to enter the name of the
artist, album, or song s/he intends to find. However, this ap-
proach is not very suitable if the user does not know exactly
what s/he wants to hear or is not able to express it in a textual
manner (Pachet, 2003). The desired mode of operation would

1 http://www.napster.com/.
2 http://www.kazaa.com/.
3 http://www.apple.com/itunes/.
4 http://www.heise.de/newsticker/meldung/50150/.

be content-based, where the music collections can be browsed
and searched according to musical content rather than exter-
nal description, or, better, a combination of content- and de-
scription-based. To that end, methods which take into account
both aspects of the musical content – e.g., rhythm, timbre,
tempo, etc., – and meta-data of various kinds – e.g. instrumen-
tation, style, artist – would be needed. The approach which is
presented here is based on the extraction of features from
audio and the visualization of these data together with various
kinds of meta-data, by forming clusters of similar pieces of
music.

To obtain musical data such as rhythm or timbre, features
relating to these properties are extracted from the audio files.
Afterwards, a similarity measure is applied to the features in
order to capture the relative degrees of similarity between
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pieces of music. These similarities are then used to train a self-
organizing map (SOM) that is finally visualized by so-called
smoothed data histograms, which reveal clusters with similar
songs.

Since we have been working on this topic for several years,
we developed some prototypes for user interfaces. One of the
first, called Islands of Music (IoM), is described in detail in
(Pampalk, 2001). It uses solely features based on loudness
modulation to create an HTML-document that is linked to the
pieces of music of the collection. IoM implements a visualization
approach that resembles geographical maps where clusters
with many songs are presented as mountains whereas sparse
areas are colored in blue like oceans on maps. As the user may
be interested in more than one musical feature, IoM was ex-
tended with the capability of switching between different views,
each of which weights the available features differently and in
effect implements a different notion of musical  similarity. The
user can choose to view a map where, for example, rhythm is
weighted by one third and timbre by two thirds. This is done with
so-called aligned self-organizing maps and is explained in detail
in (Pampalk, Dixon, Widmer, 2003a). However, this second ap-
proach, called IoMv2, still lacks the capability to process collec-
tions of arbitrary size since it does not use any hierarchical in-
formation. To address this issue, in (Schedl, 2003) the prototype
of a user interface called Visualization of Structured Music Col-
lections (ViSMuC) is presented. In addition to IoMv2, ViSMuC
uses two hierarchical components to deal with large collections:
directory structure and musical similarity.

The remainder of this article is structured as follows. In
chapter 2, first the process of feature extraction and similarity
measurement is sketched. Afterwards, our prototypes for music
visualization are presented and the used techniques explained.
Chapter 3 gives a summary and an outlook of possible appli-
cation areas.

2. Methods and discussion
Our approach to visualizing musical properties of music collec-
tions basically involves two stages. First, features capturing
some kind of musical properties have to be extracted and a
similarity measure needs to be applied to them. Hereafter,
methods of artificial intelligence, e.g., self-organizing maps, are
used to cluster the data and perform the automatic structuring of
the collection. Both stages are described in the following.

2.1 Musical features and similarity measures
Extracting meaningful descriptors such as instrumentation or
genre from music (audio) is a very difficult task. Various ap-
proaches exist to extract low-level features that capture some
aspects relevant to our hearing sensation. Characterizing music
through such low-level features is comparable for example to
the use of color histograms to describe the content of an image.
Clearly, one would expect higher-level patterns like rhythm, mel-
ody, or harmony to describe a piece of music much more accu-
rately. Extracting such semantically meaningful descriptors from
audio is currently a hot topic of research; there are no reliable
solutions to these problems at the moment, so currently we
must make do with lower-level features. In the following, we
briefly describe the steps performed to extract such features
from audio recordings, and indicate that even such low-level in-
formation can be used to create quite useful and meaningful or-
ganizations of digital music collections.

To describe the content of a piece of music, we first trans-
form the audio signal into the frequency domain via a fast fourier
transformation (FFT) (Cooley, Tukey, 1965). The human ear is
not equally responsive to all frequencies. Thus we apply an
outer and middle ear model that reduces the impact of frequen-

cies in the low (around 50 Hz) and high end (16 kHz) of the fre-
quency range (Terhardt, 1979). The linear frequency scale is
transformed to a perceptive scale known as the Bark scale with
a critical band width defined by listening experiments (Zwicker,
Fastl, 1999). Spectral masking effects are computed to take into
account the occlusion of two simultaneous sounds with similar
frequencies (Schröder, Atal, Hall, 1979), and the loudness is
computed according to the perceptual Sone scale (Bladon,
Lindblom, 1981).

As a result of the described psychoacoustic preprocessing
we obtain a sonogram, also known as an auditory spectrogram,
with the dimensions time, loudness, and frequency.

Based on these sonograms we compute a spectrum histo-
gram (SH) for each piece by simply counting how often a certain
loudness level was reached in each frequency band. This re-
sults in a 2-dimensional histogram where each bin contains the
count for the number of times a specific loudness level was ex-
ceeded, for each frequency band.

Alternatively, we can compute so-called fluctuation patterns
(FP) by modelling the modulations in each frequency band over
time with sinusoids. In particular, we compute a fast fourier
transformation (FFT) (Cooley, Tukey, 1965) on segments of the
sonogram with a length of 6 seconds and apply some filters to
emphasize fluctuations with a frequency around 4 Hz. For each
6-second-sequence of the song, we obtain a representation de-
scribing the strength in each frequency band and for each
modulation frequency. All these 6-second-segments are then
aggregated into one common representation of the entire piece
by combining them into some statistical model (e.g., simple
models like the median, or more complex ones such as Gaus-
sian mixture models [GMM]). The result of all this computation is
a fixed-size model representing a specific property of the pro-
cessed piece of music.

In the next step, distances between the representations of
all songs in a collection are calculated to measure the similarity
of arbitrary songs. This can be done in various ways, using vari-
ous distance functions, ranging from a  simple Euclidean dis-
tance measure to sophisticated methods like the Kullback-
Leibler and Earth Mover’s distances,  which are used in (Logan,
Salomon, 2001).

There have been a variety of experimental studies recently
that tried to establish which of the many features and  similarity
measures that were proposed in the past few years actually
work best (e.g., in the context of categorical tasks like genre
classification). The results obtained so far, e.g., (Aucouturier,
Pachet, 2002; Logan, Salomon, 2001; Pampalk, Dixon, Widmer,
2003b; Schedl, 2003) are inconclusive in the sense that they
show no clear superiority of one measure over all others, and
over all experiments. Music similarity is a complex concept and
cannot be fully captured in one single representation and
measure.

Our latest prototype ViSMuC uses two types of features to
characterize music, one describing the timbre and another one
addressing rhythmic characteristics. Specifically, we found that
the above-mentioned “modified fluctuation patterns” (MFS)
(Pampalk, Rauber, Merkl, 2002a), which describe rhythmic as-
pects at various levels, and “spectrum histograms” (SH) (Pamp-
alk, Dixon, Widmer, 2003a), which address timbral properties,
represent a reasonable compromise with regard to accuracy
and computing time.

The MFS features describe loudness modulations in 20 fre-
quency bands and reveal their fluctuations in the range from 0 to
10 Hertz. In fig. 1, the strong beats of the techno piece “Anthem
#5” by “Floorfilla” at about 4.5 Hz can be seen. In contrast, the
Mozart piano sonata contains no typical periodic beat, instead
many variations in tempo can be observed.
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The timbre-based SH features measure how many times the
piece of music reaches or exceeds a specific loudness in each
of 20 frequency bands. Figure 2 shows spectrum histograms of
four very different pieces of music. Like in fig. 1, it can be seen
that the piano sonata has quite low activations, mainly in the
lower frequency bands. The song by “Nightwish” is very melodi-
ous but also characterized by high energy in all frequencies.
Thus, its spectrum histogram shows high loudness levels in all
critical bands, especially at higher frequencies.

The outcome of the feature extraction is a data matrix con-
taining the features (data vectors) of all pieces of music of the col-
lection under consideration. During the last few years, we have
been developing a number of prototypes for visualizing music
collections using such feature matrices. In the following sections,
the main three prototypes are presented in chronological order.

2.2 Automatic structuring of digital music collections
Since all our prototypes use some standard techniques of statis-
tical data analysis and AI, these common steps are briefly de-
scribed before the prototypes themselves are presented.

Fig. 1. This image visualizes the MFS values for four selected pieces
of music. The color (grey-scale) bars next to the figures reveal the
unequal scaling of the MFS values

Fig. 2. This figure shows the spectrum histograms for the selected
pieces of music. The bar beside each figure shows the number of
frames into which each track was split

After the features have been extracted, we use a Principal
Components Analysis (PCA) (Jolliffe, 1986) to compress the
data, i.e., to reduce the dimensionality of the feature vectors.
This task is performed in order to reduce the computation times
for the following calculations. We are able to reduce the dimen-
sionality of the feature matrices from values greater than 1000
to 80 without any visible influence on the quality of the visualiz-
ations.

Afterwards, we use self-organizing maps (SOM) (Kohonen,
1982; 2001) to discover structure in the data by clustering the
data items (pieces of music). The SOM organizes multivariate
data on a usually 2-dimensional map in such a way that data
items which are similar in the high-dimensional data space are
projected to similar locations on the map. Basically, the SOM
consists of an ordered set of map units, each of which is as-
signed a “model vector” mi of the same dimensionality as the
original data space. The set of all model vectors of a SOM is
called its codebook . Before the SOM is trained, we initialize the
codebook linearly along the greatest eigenvectors.

In each iteration of the sequential training algorithm (Ko-
honen, 1982), one randomly selected data item x is chosen.
Subsequently, the Euclidean distance between x and each
model vector mi is calculated. The map unit possessing the
model vector mbmu that is closest to the data item x is referred to
as “best matching unit” (BMU) and is used to represent xon the
map. In the next step, the codebook is updated to reduce the
distance between xand the model vectors of the BMU and its
surrounding units. The adaptation strength decreases gradually
and depends on both distance between the model vector and
the BMU and iteration cycle. This is of particular importance
since it supports the formation of large clusters in the beginning
and a selective fine-tuning towards the end of the training. The
complete formula for updating the model vectors is given by the
equation

mi (t�1)�mi (t )�α (t )�hbmu, i (t )�[x�mi (t )] (1)

where α (t ) is the decreasing learning rate and hbmu, i (t ) defines
the spatial amount of adaptation on the map. For hbmu, i (t ) we
take a Gaussian centered at the BMU. Usually, the iterative
training is continued until a convergence criterion is fulfilled.

2.2.1 Islands of Music (IoM)
Our first prototype, Islands of Music (IoM), calculates a single
SOM based on MFS features. It visualizes the calculated SOM
by applying a newly developed technique called “smoothed data
histogram” (SDH) (Pampalk, Rauber, Merkl, 2002b). The SDH
estimates the density of the data items over the map. To this
end, each data item votes for its best matching map units. The
selected units are weighted according to the quality of the
matching. The votes are accumulated in a matrix describing the
distribution over the complete map. After each piece of music
has voted, the resulting matrix is interpolated in order to obtain a
smooth visualization. Finally, the interpolated matrix is visual-
ized by applying a colormap. The outcome of this final stage is a
map that resembles geographical maps. An example can be
found in fig. 3. Blue regions (oceans) indicate areas onto which
very few pieces of music are mapped, whereas clusters contain-
ing lots of pieces are colored in brown and white (mountains and
snow).

2.2.2 Aligned self-organizing maps – IoMv2
The first version of IoM uses only one kind of features (fluctu-
ation patterns) to calculate an SOM and visualize it using an
SDH. However, the user may be interested in having his/her
music collection visualized not only according to rhythmical
properties, but also based on timbral ones or according to any
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other descriptor. To address this issue, we elaborated the con-
cept of aligned self-organizing maps, which are used in the sec-
ond version of IoM. Aligned SOM, as described in (Pampalk,
Dixon, Widmer, 2003a), is a new algorithm for computing a
stack of mutually constrained SOM that can structure and repre-
sent a given data set according to different aspects of similarity
and offers the possibility of gradually shifting the focus from one
aspect to another by providing a number of aligned views. More
precisely, multiple SOM are trained on the same data using
slightly but gradually modified parameters. The resulting stack
consists of the SOM that represent the extreme values of the
aspects (pmin, pmax) and a number of layers that are inserted be-
tween them. The individual SOM are trained such that each
layer maps similar data items near one another within the layer.
Neighboring layers are further constrained to map the same
items to similar locations, which makes for smooth transitions
between layers. To that end, we define a distance between indi-
vidual SOM layers (inter-layer distance) that is made to depend
on how similar the respective views are. An illustration of the
concept of aligned SOM can be found in fig. 4.

The training algorithm for standard SOM that was presented
above had to be extended to handle the multi-layer-architecture
of aligned SOM. In detail, in each iteration, not only a data item
x, but also a layer l is chosen randomly. Hereafter, the BMU
mbmu for x within layer l is calculated. The adaptations of the

Fig. 3. This figure shows a smoothed data histogram (SDH) created
with the first version of Islands of Music. The SOM was trained with a
data set containing 273 “Queen”-songs. For each map unit, the pieces
mapped to this unit are displayed

Fig. 4. This figure shows the basic architecture of Aligned SOM

model vectors within layer l are calculated based on the intra-
layer distances exactly as shown in Equ. 1. The update function
for all other layers takes into account the inter-layer distances
and adapts the model vectors according to the representation of
the data item in the respective layer. After having updated all
model vectors in all layers, the described process is repeated
iteratively until convergence. As for the representation of the
same data item x in different layers, each data item is assigned
one feature vector xl for each layer l, where each xl is composed
of at least two feature sets (one for each aspect), which are
weighted differently according to the feature balance par-
ameters pi of the layer. Equ. 2 shows the compound feature vec-
tor x in the two-feature-case. p1 and p1 are in the range of [pmin,
pmax], m denotes the dimensionality of feature 1 and n that of
feature 2. Furthermore, p1 and p2 sum up to pmax so that an in-
crease in either of the two parameters causes a decrease in the
other.

x�[p1�x11 … p1�x1m p2�x21 … p2�x2n]. (2)

Figure 5 gives an illustration of the effect of aligned SOM.
For this figure, we used a simple artificial dataset consisting of
16 animals, each described via 13 Boolean features describing
aspects of the animal’s appearance (e.g., type of skin or number
of legs) and activity (e.g., ability to swim). The leftmost picture,
which uses solely appearance features, clusters all mammals
together in the lower half of the map, whereas birds are located
in the upper regions. As the focus is gradually shifted from ap-
pearance to activity, the map becomes reorganized as can be
seen in the two center figures. In the rightmost picture, with a
ratio of 0:1 between appearance and activity, all predators can
be found on the left.

The same technology can be applied to collections of music
pieces represented as feature vectors. We have made available
an online demonstration of IoMv2 on a small music collection
that combines three different features: rhythm-based, timbre-
based, and user-defined (i.e., based on a direct positioning, by
the user, of the songs on the map according to personal musical
preferences). The reader is invited to interact with the on-line
demo5.

2.2.3 Hierarchical organization of music collections – ViSMuC
Although IoMv2 permits focusing the view on various musical
properties, the system is still constrained to a limited number of
pieces of music since it does not allow creating a hierarchical
structure. Our latest prototype, Visualization of Structured Music
Collections (ViSMuC)6, in contrast, provides an automatic struc-
turing of the input music collection. Figure 6 shows the user in-
terface of ViSMuC, which uses aligned SOM to permit focus
shifting between rhythm and timbre. As for the automatic struc-
turing that is necessary to handle music collections of arbitrary
size, two different hierarchies are used together with  focusing
and linking techniques. The first hierarchy is defined by the
number of music files which are mapped to each unit. If this
number exceeds a specified limit for a certain map unit (five in
our demonstration), only the best matching data item is chosen
and displayed to represent a prototype for the map unit (focus-
ing). The omitted pieces of music are made available to the user
via a link to an SOM on a lower hierarchy level which consists of
all omitted pieces of the particular map unit together with its
prototype (linking).

Since users often define sophisticated, or at least meaning-
ful, directory structures for their music collections, the second
hierarchical component is given by the directory structure.

5 http://www.oefai.at/elias/aligned-soms/IoMv2/.
6 http://vismuc.schedl.name/.
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Hence, for each displayed piece of music, a link to a SOM that
comprises all music files in the same directory is made available
to the user. In fig. 6, these links are  situated in the lower right
corner of the map units, next to the darker links used by the first
hierarchy.

The user interface also permits visualizing almost arbitrary
meta-information taken, for example, from ID3-tags or external
databases. For this purpose, the distribution of (attribute, value)-
pairs over the map is visualized with an SDH, as can be seen for
some examples in the right frame in fig. 6. Since ID3 is very wi-
dely used for tagging music collections, these data are visuali-
zed not only by SDH but are also presented in a pop-up-window
that appears when the user moves the mouse over the name of
a piece of music. Furthermore, VisMuC offers different color-
maps, some of which focus more on strong contrasts, whereas
others produce smoother transitions.

3. Summary and application areas
This article has presented three prototypes for the intelligent
structuring and visualization of digital music collections, and
briefly described the underlying techniques for feature extrac-
tion, similarity measurement, data compression, clustering, and
visualization. Our latest prototype, Visualization of Structured

Fig. 5. This figure shows four aligned SOM trained on a test dataset which contains appearance and activity features for a few animals. From left to
right the organization of the SOM changes according to the weighting of the features. The ratio between appearance and activity is the following: 1 : 0
(leftmost), 2 : 1, 1 : 2, 0 : 1 (rightmost).

Fig. 6. This image depicts the ViSMuC-user interface for a collection of 834 songs. The left frame shows the control panel with the aligned SOM-
and colormap-selector, the centered one contains the actual visualization, and the right frame gives information about the distribution of meta-data
values from an external database

Music Collections (ViSMuC), combines similarity based collec-
tion mapping with automatic hierarchy building and thus makes
it possible to work with truly large music archives (tens of thou-
sands of recordings).

There is a wide field of application possibilities for these
technologies. Systems such as those described above could be
used either for organizing and browsing through private music
collections, or for supporting users of commercial music stores
in exploring their content. Other application areas are phone-
based services and smart home entertainment devices. We are
currently discussing exploitation strategies with several com-
panies from the digital music sector.

The main device on which the prototypes can be used cur-
rently is the personal computer. Future versions should be ex-
tended towards usage on mobile devices like personal digital
assistants (PDA) or MP3 players with built-in screens. Unfortu-
nately, today’s screen resolutions of such devices are still too
low to display the complete user interface properly. Another re-
search question concerns improvements of the computational
complexity, e.g. by optimizing the algorithms. Ideally, the calcu-
lation times should be reduced to a level where, given the musi-
cal features, the visualizations can be calculated on demand.
Moreover, experiments with additional meta-data should be
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conducted in order to improve the quality of the clustering and to
enhance the information given to the user. A step in this direc-
tion is the European FP6 project “Semantic Interaction with
Music Audio Contents” (SIMAC)7, which, among other things,
aims at finding and organizing “semantic” (i.e., musically inter-
pretable) descriptors of musical content. Also, extra-musical in-
formation like social meta-data may be used to improve the
quality of collection organization. For example, in (Knees,
Pampalk, Widmer, 2004) a web-based approach for artist clas-
sification has described which entirely bypasses the actual
music and characterizes artists exclusively via information that
can be found about them on the Internet. This approach uses
solely information gained from the Internet search engines
Yahoo8 and Google9.

Generally, research on intelligent music processing is cur-
rently experiencing a strong boost, driven by the ongoing rapid
transition of the music market from physical (e.g., CD) to digital
media (e.g., distribution of audio files via the Internet). Music in-
dustry urgently asks for new intelligent music processing tech-
nology that will support novel types of content-based music ser-
vices on many types of devices (home entertainment centers,
PDA, MP3 players, mobile phones), and artificial intelligence
with its subfields such as machine learning and intelligent data
analysis has an important role to play in all this.
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