Personalized Music Recommendation in a Mobile
Environment

Claus Schabetsberger
Department of Computational Perception
Johannes Kepler University Linz, Austria
claus.schabetsberger@gmail.com

ABSTRACT

Addressing the spiraling amount of music and video con-
sumption via streaming services, in particular on mobile de-
vices, we present a music player application for the Android
platform, which employs a hybrid approach to generate a list
of track recommendations for a user. We propose and eval-
uate two different algorithms, namely a content-based algo-
rithm and an approach that exploits social similarity. While
the former is based on rhythm features, the latter exploits
“related videos” relations from YouTube. We show via a user
questionnaire that recommendation results based on content
slightly, but statistically significantly, outperform the social
approach. Given that full audio content is not available im-
mediately in a streaming environment, however, we suggest
a hybrid, dynamic approach to music recommendation.

Playlists are created as a linear, user-adjustable mixture
of both content and social similarity. They are offered to the
user via an Android application dubbed “Beat Commander”.
Besides displaying the results of the playlist generation ap-
proach as text, the player features a dynamic visualization
of the playlist, using a version of Sammon’s mapping.

Keywords

mobile music player, hybrid music recommendation

Categories and Subject Descriptors

Information systems [Information search and retrieval]:
Music recommendation

1. MOTIVATION

In the past few years, we have witnessed a considerable
shift in how people consume video and music. The emer-
gence of streaming services such as YouTube' and Spotify?
has shown the need for novel techniques to sift through the
enormous amounts of multimedia data available at the user’s

http://www.youtube . com
2http://www.spotify.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MoMM?2013, 2-4 December, 2013, Vienna, Austria.

Copyright 2013 ACM 978-1-4503-2106-8/13/12 ...$15.00.

Markus Sched|
Department of Computational Perception
Johannes Kepler University Linz, Austria

markus.schedl@jku.at

fingertips. Also the devices we use to consume multimedia
material have changed from stationary PCs to mobile de-
vices such as smart phones. Addressing these developments,
we propose a novel, hybrid approach to recommend music in
a mobile environment. Our approach focuses on Android>-
based smart phones, where the minimum required version is
4.1 Jelly Bean. It is based on music features extracted from
the audio content directly on the device and on contextual,
social features inferred from YouTube data.

2. RELATED WORK

Different hybrid music recommendation approaches have
been developed, but only a few of them are designed for a
mobile environment. Among them, Cai et al. [1] propose a
hybrid approach in which social information from Last.fm*
and Pandora® is combined with music content features to
train a support vector machine (SVM) [11]. This SVM is
then used to generate a list of recommended tracks. How-
ever, this solution has the drawback that the SVM has to be
retrained whenever new songs are added to the music col-
lection. Additionally, this work is not intended to be used
in a mobile environment.

Wang et al. [12] propose a system based on audio content,
which tries to determine the user activity as the context by
using sensors in a conventional smart phone. The approach
then tries to find similar audio tracks according to the audio
content determined by autotagging and implicit user feed-
back. If, for instance, a user listens to a song only a few sec-
onds or until the end, this feedback is used to make recom-
mendations. Depending on the information about the user’s
context and the implicit feedback, a probabilistic model is
used to find most similar tracks. Since this model has to be
trained offline, it would have to be re-trained over and over
again every time when new tracks are added to the music
collection.

Lee et al. [5] propose an approach similar to [12], but
taking a pervasive computing perspective. Their idea is to
build a mobile, context-aware application, which uses collab-
orative filtering to recommend music from users in similar
situations. Additionally, they include non-standard smart
phone sensors such as an electrocardiogram (EKG) sensor
in order to capture the user context more precisely.

Yu et al. [14] present another hybrid recommendation ap-
proach designed for a mobile environment. At first, it deter-
mines whether a media item, such as an audio- or video file,

*http://www.android.com/
‘http://www.last.fm
Shttp://www.pandora.com

conforms to the preferences of a user by comparing title,
genre, actor and keywords between preferred media items
and all entries in a database. After that, a Naive Bayes
classifier is used to determine the probability for a media
item to be recommended given a certain user situation. Fi-
nally, most similar media items are presented to a user in a
particular way, by keeping in mind the output capabilities
of the requesting smart phone device. Depending on these
capabilities, a media item can be presented as video, audio
or text. This approach, however, uses a prepared database
that already contains extracted features of media items and
it mainly focuses on recommendation rather than on feature
extraction.

Pampalk et al. [7] suggest an application that relies only
on audio content analysis to determine music tracks similar
to a seed. By providing a skip button, a user is able to
define music preferences. The latest track not skipped by
the user is then used as input to content-based similarity
models. Again, this work is not targeted at mobile usage.

3. MUSIC RECOMMENDATION

To generate a playlist based on extracted audio features
as well as on social information, a web service was imple-
mented, which has access to an internal database that holds
audio features and user-related data such as favorite tracks.
Additionally, the web service includes an interface to query
YouTube and consequently compute social similarities.

A smart phone application based on Android was devel-
oped, which acts as an intelligent user interface to recom-
mend and visualize tracks. While listening to music tracks,
a user is able to rate them. These ratings are sent to the web
service for further processing. Additionally, the application
is responsible for extracting audio features, more precisely
Fluctuation Patterns (FP) [6], which are also transmitted to
the web service.

To generate a playlist, two different algorithms were im-
plemented — one using content similarity defined on FPs, the
other one by computing social similarity from information
about related videos on YouTube. Both approaches require
a seed track as input, which is a randomly selected favorite
track of the user. The probability to select a particular seed
track is given by its user rating.

Content-based Similarity

This approach uses FPs in order to find similar music tracks.
FPs describe rhythm by modeling recurring beats. These
features were proposed in [6], but are used in our work in a
slightly different form, as described below. The entire audio
feature extraction process is performed on the user’s smart
phone, while she is listening to music. This involves eight
processing steps as shown in Figure 1.

When music is played on the smart phone, audio data in
pulse code modulated format (PCM) is analyzed. To reduce
the amount of input data and consequently speed up com-
putation, the signal is first converted to mono. In order to
avoid fade-in effects, the first 12 seconds are skipped. The
remaining signal is split into 6-second-chunks, where only
every third chunk is selected to be processed one at a time.
Subsequently, the power spectrum is computed by apply-
ing a Fast Fourier Transform (FFT) on Hanning-windowed
frames of 1024 samples each. In step 2, frequency values
are grouped into critical bands according to the Bark scale.
The purpose of steps 3 to 5 is to convert the sound pres-

sure values given in the Power spectrum representation to
Sone values, a perceptual measure of loudness. To obtain
time-independent features, the modulation amplitude spec-
trum is calculated in step 6. This is done by applying a
Discrete Fourier Transform (DFT) to each Bark band, yield-
ing information on how often loudness changes per second.
Since most loudness changes are in a range of [0,10] Hertz
(Hz), only this range is considered. Step 7 employs another
psychoacoustic transformation to weight loudness changes
according to the model of Fluctuation Strength [3]. De-
pending on the frequency of loudness changes, the perceived
intensity is different. Human perception of loudness is par-
ticularly sensitive at periodicities from 0 to 4 Hz, but then
decreases slowly. Finally, a Gaussian blur filter is applied in
order to make the resulting FP features more robust.

With this, one iteration of the feature extraction process
is complete. During the analysis of a music track, the fea-
ture extraction process described is applied to 5 individual
audio snippets of 6 seconds duration which corresponds to
90 seconds of audio data that is actually analyzed. This
represents about a third of a conventional audio file of 5
minutes duration, but has also the benefit of not consuming
too much energy from the smart phone of the user. Finally,
the median of the resulting feature vectors is sent to the web
service. The main difference to the originally proposed ap-
proach in [6] is that spectral masking is not applied, because
this reduces too much of the lower frequencies of audio data
as it turned out during experiments.

The content similarity algorithm on the web service uses
FPs to return a list of similar tracks. First, the Euclidean
distance between the seed track pattern p; and all patterns in
the database ¢; are calculated. This value is normalized and
the inverse of the distance is taken as similarity estimate,
as shown in Equation 1. The value of ¢mae. represents the
maximum possible Euclidean distance between two patterns
and there are in total n values in each of the compared FP
feature vectors (n = 1500 in our implementation).

2
N Qmaz

sime(p,q) =1 — (1)

One issue of the content similarity algorithm in a stream-
ing environment is the cold start problem, i.e. similarity be-
tween tracks can only be computed if the audio is already
available. The solution we propose here is twofold: (i) we
start computing FPs “on the fly”, when audio data comes in
and (ii) we follow the idea of crowdsourcing, i.e., the more
users are listening to a track the more likely the system al-
ready knows the respective FPs.

Determining previously unseen tracks and computing their
FPs requires a second approach to select pieces similar to
the ones already known by the system. This is due to the
fact that audio content similarity can only be calculated on
known tracks. In order to extend the set of pieces known
to the user, however, another approach is needed. This is
where the social similarity algorithm comes into play.

Social Similarity

The social similarity algorithm uses the “related videos” fea-
ture of YouTube to find tracks similar to a given seed. Roughly
speaking, this feature works as follows: First the “keyword
relevance” between videos is calculated using the title, sum-
mary, tags, and other information of YouTube videos. The

PCM audio data

'

Extraction of Fluctuation Patterns

Preprocessing

Power spectrum —b‘ Bark scale

AD{ dB conversion H Phon conversion —

Saone conversion

Specific loudness sensation over 6 seconds audio data

v

Modulation amplitude spectrum 4>{ Fluctuation strength spectrum 4>{ Modified fluctuation strength spectrum —

257 60 matrix
] (feature values)

Figure 1: Extraction of Fluctuation Patterns

result of this is indirectly dependent on the taste of other
users, because it returns only those videos as related, which
share a popularity likewise to the selected seed track [13].
The popularity of a video will then be determined by mea-
suring different signals, such as the click count of a video
or the total duration of all views. [2] For example, if a user
watches 50 seconds of a 1-minute-video, the popularity is
assumed to be higher than if the user only watches its first
5 seconds.

In our approach to social similarity, we use YouTube’s re-
lated videos function to dynamically build a directed graph
whose nodes are videos and all edges have uniform weight.
An edge from video A to B is inserted if B occurs within the
set of related videos of A. More sophisticated approaches are
currently under investigation. Based on this graph, which
is stored on the server and constantly extended while new
related videos information comes in, we compute social sim-
ilarities as follows: First the seed track marks the starting
point in the related videos graph. The algorithm then tries
to find N track with minimum distance to the seed track
using Breadth-first search. Finally, the similarity between
the seed track and the related track is determined as shown
in Equation 2, where d,, ; denominates the distance between
the seed track and the related track.

1

T a1 2)

sims(p, q)

Hybrid Music Recommendation

To determine a list of recommended tracks given a seed, the
similarity scores produced by both algorithms are combined.
Every recommended track is hence assigned a similarity vec-
tor, which contains a value for the content- and the social
similarity. Tracks that were recently recommended are re-
moved in order to avoid the same track being suggested over
and over again, boring the user.

If an insufficient number of tracks are found at this point,
for instance, because the system does not know about the
user’s favorites or the similarity scores for the user’s selected
tracks have not been computed yet, the list of recommended
tracks is populated with tracks from the most popular video
feed provided by YouTube. This frequently happens when a
user starts the Android application for the first time.

Having a set of recommended tracks, the next step is to
sort it according to the similarity to the selected seed track.
For that, a linear combination of both kinds of similarity
is computed according to Equation 3, which is eventually
used to create a sorted list of recommended tracks, shown as
playlist to the user. The weights w, of the content similarity

Seed track

David Guetta - Titanium ft. Sia
Play this video (duration: 04:06)

@ ShowlHide track description
Playlist

Track position in the playlist: |1 v | &

Fun.: We Are Young ft. Janelle Monae
Play this video (duration: 04:13)

@ Show/Hide track description
Track position in the playlist: |2 v |

Rihanna - We Found Love ft. Calvin Harris
Play this video (duration: 05:36)

@ Show/Hide track description
Submission

Please save your decision by pressing one of the following buttons.

| Save evaluation result | | All tracks are the same | | Can not tell the order

Figure 2: Example of an evaluation input form

algorithm and ws of the social similarity algorithm can be
defined by the user as described in Section 5.

Ws
We + Ws

®3)

We .
+ sims(p, q) -

sim(p, q) = stme(p,q) - ———
(p,q) (0 0)

4. EVALUATION

This evaluation aims at determining the precision of both
similarity algorithms in terms of the relative track order. To
this end, we use an A /B test, i.e., given a seed track and two
target tracks, users are asked to tell which of the targets are
more similar to the seed. This approach is similar to the one
employed in the TagATune game [4]. An example input form
is shown in Figure 2, which was provided to each participant
together with detailed information about the intention of
the evaluation. As both algorithms try to find most similar
tracks for a particular seed track, it is expected that, for
instance, the first recommended track is more similar to the
seed track than the second recommended track.

In general, [10] has shown that current algorithms de-

Algorithm Correct | Incorrect
Content similarity 82% 18%
Social similarity 63% 37%

Table 1: Overall evaluation results

pending on collaborative filtering produce better recommen-
dations than content similarity algorithms. It is hence ex-
pected that our social similarity approach outperforms the
proposed content-based method.

Experimental Setup

Evaluation was conducted using 50 tracks from 10 differ-
ent genres (uniformly distributed) as seed tracks and 250
tracks with both types of similarity available as target set.
10 participants were asked to indicate for the 50 seed tracks
which of the 2 target tracks are more similar to the seed.
Participants were aged between 14 and 65 and had a differ-
ent background: 3 of them were students, 2 were high-school
graduates and 5 have passed secondary modern school. Only
1 participant was actually a musician.

The target tracks were selected using either content- or
social similarity. Participants could also indicate that they
were not able to tell which of the 2 targets were more similar
to the seed. These cases were excluded from further process-
ing. The precision was then computed using as ground truth
these relative similarity judgments of the participants.

Evaluation Results

The evaluation results are summarized in Table 1. Accord-
ing to a x?-test [9], the content similarity algorithm pro-
duced more accurate playlists, with a significance level of
10%. In general, tracks recommended via content similarity
were perceived more similar than tracks suggested by social
similarity. This surprising result can be explained by: (i)
the quite simple model of social similarity we employ, (ii)
the related videos feature of YouTube not being tailored to
the task, or (iii) the participants in the user study having a
perception of music similarity that is better captured by the
rhythm information reflected in the FP features.

We further evaluated precision of both approaches on the
genre level. It turned out that both algorithms had most
problems with country music. This can be explained by
the fact that all recommended country tracks sounded very
similar. The content similarity algorithm did not produce
any error at all for the 5 genres Blues, Classic, Dance, Pop,
and Rock, while the social similarity algorithm produced at
least one incorrectly sorted playlist for each genre.

5. THE BEAT COMMANDER PLAYER

The Android application dubbed “Beat Commander” was
designed to be user-friendly and simple. It communicates
with the web service, for example, to submit FPs computed
on the device, to request a playlist given the user’s tracks,
or to retrieve information about the URL of a video on
YouTube. The application is also able to stream YouTube
videos and to gather ratings from the user. To create playlists,
the user can provide weights to indicate the influence of both
recommendation algorithms on the playlist creation process.

The minimum hardware and software requirements of “Beat
Commander” are summarized in table 2. The required hard-

Requirements

Hardware | 1 GHz ARM Cortex-A8 processor
512 MB RAM
5 MB disc space

Software | Android 4.1 Jelly Bean

Table 2: Minimum application requirements

ware is comparable to a Samsung Galaxy S°.

An important functionality of “Beat Commander” is to vi-
sualize the playlist, hence allow to navigate through tracks
in an intuitive way. For that, different views are provided,
some of which are shown in Figure 3. The first view illus-
trates music tracks as planets, which creates the impression
that the user is sitting in a space ship watching the tracks
move around him while navigating through a galaxy of mu-
sic. A planet gets bigger when the respective music is played
and it may disappear when the user switches to the next mu-
sic track, thus enforcing a novel list of recommended tracks.
Coordinates of planets are calculated by the web service by
applying Sammon’s mapping [8] on the full similarity matri-
ces of the tracks in the recommended set and the seed track.
The second view shows the playlist in a more structured
way, where tracks are listed in order of their similarity to
the seed. This view also reveals more detailed information,
in particular the similarity of the recommended tracks to
the seed. Additionally “Beat Commander” provides a view
of the YouTube video and visualizations of the audio content
analysis steps presented in Section 3.

6. CONCLUSIONS AND FUTURE WORK

We presented two approaches to define music similarity
based on audio content and based on social information in-
ferred from YouTube. We integrated the two methods into
a mobile application that uses the resulting similarities to
automatically create lists of recommended tracks matching
the user’s taste. Furthermore, we evaluated the quality of
playlists produced by the content- and the social approach
via a user study involving A /B listening tests and we showed
the content-based approach outperforms the social approach
in this setting. Nevertheless, the combination of the two is
necessary as content data is not available from the beginning
in a streaming environment.

Future work will look into more elaborate methods to in-
corporate music context and social information into the sys-
tem. Furthermore, we plan to integrate different methods
to select seed tracks and to include a more comprehensive
user model, taking into account environmental data readily
available on mobile devices, for example, location, weather,
activity, and time.

7. ACKNOWLEDGMENTS

This research is supported by the Austrian Science Fund
(FWF): P22856, P25655, and the EU FP7 project PHENICX:
601166.

8. REFERENCES

[1] J. Cai, J. Francis, and S. Gheysens. Creating a Hybrid
Music Recommendation System from Content and

Shttp://www.samsung.com

*

Favorites

«

Music player

.*

Favarites

«

Music player

Playlist
Currently playing:
The Black

Tracks in the queue:
#7 Chris Brown Ft. T-Pain - Ki
' (Official Music Videao) HQ + Lyr

#2 Cut Chemist - The Garden Live with the
! le Symphony

Figure 3: Two selected views of the music player

Social-Based Algorithms. Governor’s School of
Engineering and Technology Research Journal, 2009.
J. Doe. Changes to Related and Recommended
Videos, March 09 2012.
http://youtubecreator.blogspot.co.at/2012/03/
changes-to-related-and-recommended.html.

H. Fastl. Fluctuation Strength and Temporal Masking
Patterns of Amplitude-Modulated Broad-Band Noise.
Hearing Research, 8:59—69, 1982.

E. Law and L. von Ahn. Input-Agreement: A New
Mechanism for Collecting Data Using Human
Computation Games. In 27th International
Conference on Human Factors in Computing Systems,
Boston, USA, 2009.

H. Lee and J. Kwon. Situation and Social
Awareness-based Personalized Recommendation
Service in Pervasive Computing Environment. In 5th
International Workshop on Smart Environments and
Ambient Intelligence, San Diego, USA, March 2013.
E. Pampalk. Islands of Music: Analysis, Organization,
and Visualization of Music Archives. Master’s thesis,
Vienna University of Technology, Vienna, Austria,
December 2001.

E. Pampalk, T. Pohle, and G. Widmer. Dynamic
Playlist Generation Based On Skipping Behavior. In

6th International Conference on Music Information
Retrieval, London, UK, September 2004.

[8] J. W. Sammon. A Nonlinear Mapping for Data
Structure Analysis. IEEE Transactions on Computers,
18:401-409, 1969.

[9] D. J. Sheskin. Handbook of Parametric and
Nonparametric Statistical Procedures. Chapman &
Hall/CRC, 3rd edition, 2004.

[10] M. Slaney. Web-Scale Multimedia Analysis: Does
Content Matter? IEEE MultiMedia, 18(2):12-15, 2011.

[11] V. N. Vapnik. Statistical Learning Theory. Wiley,
Chichester, UK, 1998.

[12] X. Wang, D. Rosenblum, and Y. Wang.
Context-Aware Mobile Music Recommendation for
Daily Activities. In 20th ACM International
Conference on Multimedia, Nara, Japan,
October—November 2012.

[13] S. Wittens. Six Degrees of YouTube, August 10 2012.
http://www.strutta.com/resources/posts/
six-degrees-of-youtube.

[14] Z. Yu, X. Zhou, D. Zhang, C.-Y. Chin, and X. Wang.
Supporting Context-Aware Media Recommendations
for Smart Phones. IEEE Pervasive Computing,
5(3):68-75, July-September 2006.

