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“Reinventing the Wheel”: A Novel Approach to
Music Player Interfaces

Tim Pohle, Peter Knees, Markus Schedl, Elias Pampalk, and Gerhard Widmer

Abstract—We present a novel interface to (portable) music
players that benefits from intelligently structured collections of
audio files. For structuring, we calculate similarities between
every pair of songs and model a travelling salesman problem
(TSP) that is solved to obtain a playlist (i.e., the track ordering
during playback) where the average distance between consecutive
pieces of music is minimal according to the similarity measure.
The similarities are determined using both audio signal analysis of
the music tracks and web-based artist profile comparison. Indeed,
we will show how to enhance the quality of the well-established
methods based on audio signal processing with features derived
from web pages of music artists. Using a TSP allows for creating
circular playlists that can be easily browsed with a wheel as
input device. We investigate the usefulness of four different TSP
algorithms for this purpose. For evaluating the quality of the
generated playlists, we apply a number of quality measures to two
real-world music collections. It turns out that the proposed combi-
nation of audio and text-based similarity yields better results than
the initial approach based on audio data only. We implemented
an audio player as Java applet to demonstrate the benefits of our
approach. Furthermore, we present the results of a small user
study conducted to evaluate the quality of the generated playlists.

Index Terms— Feature extraction, music, music playlist genera-
tion, portable media players, user interfaces.

I. INTRODUCTION

VER the past few years, electronic music distribution

(regardless of whether commercial or personal) has led
many users to accumulate vast collections of digital audio files.
These large numbers of audio tracks in private repositories
make it virtually impossible for users to keep track of every
piece. Thus, sophisticated methods for organizing large music
repositories become more and more important. Considering
the overwhelming economic success of high-capacity mobile
music players, such as Apple’s “iPod”, the need for intelligent
methods for structuring and exploring music collections in this
domain becomes apparent. Since mobile devices are intended to
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Fig. 1. Screenshot of our Java applet “Traveller’s Sound Player”.

be used en-route, interface designers have to consider that users
are seldom capable of paying much attention to the handling
of their players. For this reason, simple and intuitive—never-
theless powerful—user interfaces will be a vital part of future
music players.

For example, imagine the following situation: a passionate
jogger always does sports with music, but is fed up with lis-
tening to the same music over and over again. Therefore, she
purchases a mobile MP3-player with a large hard disk. Unfor-
tunately, the songs are not structured intelligently such that simi-
larly sounding pieces are arranged adjacently, but in a traditional
artist-album-track hierarchy. Thus, the jogger has to stop and
manually change the order in which the music pieces should be
played (the playlist).

Using our novel user interface, she could choose music which
fits her momentary mood, without delaying the workout, by
browsing through the collection with a circular wheel. Such a
user interface could look like the one in Fig. 1. After playing
the track our potential user chose as a starting point, the player
automatically keeps on playing similar tracks. At the end of her
route, the user may simply turn the wheel to another music style
on the fly, e.g., to some relaxing chill-out songs for walking
home.

We present an approach to automatically organizing a music
collection into a large circular playlist by applying a Travel-
ling Salesman Algorithm on the calculated music similarity. If
such an algorithm succeeds in finding the best tour, the gener-
ated playlist satisfies the constraint that consecutive tracks are
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maximally similar on average, i.e., the average distance between
consecutive tracks is minimal. The whole playlist—and thus the
whole collection—is easily accessible with only one circular
controller which we call the “wheel”.

Our approach is based on the calculation of acoustical
similarity between music tracks and on retrieving information
about artists from the web. This paper contributes to the current
state-of-the-art by presenting a new way to combine these
distinct sources of information for playlist generation.

For evaluation, we used two audio collections with different
characteristics. It turns out that the proposed combination of
audio- and text-based similarity not only reduces the number
of necessary calculations considerably but also yields better
results, in terms of musical quality, than the initial approach
based on audio data only, cf. [1]. Additionally, we conducted
a small user study that further confirms the quality of the
resulting playlists.

II. RELATED WORK

Quite some work has already been done on playlist generation
as well as on user interfaces to music collections. [2] treat the
problem of playlist generation as a network flow problem. Given
a song collection, where each piece is labeled with a number of
boolean attributes representing arbitrary aspects of the music,
one start track and one end track, the algorithm finds a path
(of user-defined length) through the network satisfying user-de-
fined constraints. The proposed algorithm is an integer linear
program, thus it is NP-hard.

In [3], a more efficient approach for handling various types
of metadata is presented. According to user-defined constraints,
the metadata of each track is transformed into a cost function.
The playlist is constructed by iteratively optimizing an initial
randomly chosen playlist with regard to the cost function.

In [4], it is not assumed that the tracks are already labeled.
The playlist generation algorithm is rather based on a music
similarity function (cf. [5]) which can be computed automati-
cally.! Several approaches are evaluated for producing a playlist
of given length for a given start track.

Regarding user interfaces that support browsing through
music collections, there exist quite different approaches. [6]
presents an approach where users can find music by specifying
properties (e.g., tempo or spectral centroid). In [7], self-orga-
nizing maps (SOM) [8] are used to cluster similar pieces of
music. The SOMs are visualized by means of smoothed data
histograms, cf. [9]. One of the user interfaces also provides
hierarchical structuring of music collections.

In [10], a highly interactive user interface that facilitates
music exploration and playlist generation is presented. The
user can grab pieces of music from similarity-based flows of
tracks to create playlists.

III. METHOD

Comparing pieces of music is regarded as being a difficult
task as musical similarity is an ill-defined concept. There are
many different aspects of music similarity, whose actual impacts

Tn our experiments, we used a similar function.
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vary between individuals and depending on the situation. Al-
though often used as a dimension for structuring music collec-
tions, musical genre lacks an objective and universal definition.
Even though it may capture some aspects, intelligent structuring
techniques should not solely rely on genre information.

Algorithms for capturing aspects of musical similarity—e.g.,
timbre, instrumentation, or socio-cultural background of com-
posers and performers—have been developed. The outcome
of such an algorithm can be converted into a low-dimensional
space by applying dimensionality reduction techniques such
as the principal component analysis (PCA) or self-organizing
maps (SOMs), e.g., [11]. The low-dimensional representa-
tion can be used for playlist generation and browsing music
collections.

In the approach we present here, we generate one large
playlist consisting of all tracks from the collection by modeling
a travelling salesman problem (TSP) on the musical distances
obtained from an audio-based similarity function. We further
enhance it by including web-derived features, which also incor-
porates “cultural” aspects since the web provides knowledge
and opinions of a large number of people. The basic goal is to
maximize the average similarity between consecutive tracks
in the playlist, and thus, to obtain playlists containing large
sections of consistent music. The playlist resulting from our
algorithm can be interpreted as a projection of the collection
onto one dimension. It is arranged around a circular wheel to
make it easily accessible.

A. Audio-Based Similarity

For computing the perceived acoustical similarity of music, a
great variety of algorithms has been proposed (for an overview
of some of these, see e.g., [12]). In this work, we decided to
follow a well-established algorithmic procedure, which we have
shown in previous experiments to outperform many other ap-
proaches based solely on audio signal analysis [12]: For each
audio track, mel frequency cepstral coefficients (MFCCs), e.g.,
[13], [14], are computed on short-time audio segments (called
frames) to describe the spectral envelope of each frame. The n'"
MEFCC ¢, is computed via the inverse Fourier transform of the
log spectrum, with the spectrum S being represented on the mel
scale [15]

w=+7
1 jw jw-n
Cn = 5o X / log (5(e7)) - €“ " dw. (1

By discarding the higher-order MFCCs, it is possible to re-
tain only a rather coarse description of the frame’s envelope.
This is beneficial for the ability to compare different frames,
but possibly at the cost of discarding musically meaningful
information.

Ignoring the temporal order of frames, each song is then rep-
resented as a Gaussian mixture model (GMM)), e.g., [16], of the
distribution of MFCCs. The similarity of two pieces is defined as
the inverse of the distance between their GMMs, which again is
computed by determining the likelihood that a number of points
generated randomly with the distribution of one song’s GMM
would have been produced by the other song’s GMM, and vice
versa. Each of these steps is described in detail in the relevant
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literature (e.g., [5], [15], [17]). In our implementation, we used
parameters consistent with those proposed in [17]. The wave
files were downsampled to 22 kHz, on each frame we calcu-
lated 19 MFCCs, and the number of clusters per GMM was 30.

B. Web-Based Similarity

Perception of music is a highly subjective phenomenon that
is also influenced by information other than the pure audio
signal. Indeed, cultural, social, historical, and contextual as-
pects should be taken into account when trying to model human
music perception. An easily accessible source for this kind of
information is the World Wide Web since it incorporates many
people’s knowledge and opinions. Thus, to complement the
audio-based similarity measure with cultural knowledge, we
apply web-information retrieval techniques. To this end, we
use the names of the artists contained in the collection. For
each artist, we search the web with Google. The query string
consists of the artist’s name as an exact phrase extended by the
keyword music. We retrieve 50 of the top-ranked web pages for
each query, remove all HTML tags, and use common English
stop word lists to remove frequent terms. For computational
efficiency, we also remove all terms that do not occur on at
least ¢ pages over all artists. We choose the threshold ¢ such
that about 10 000 terms remain.

For each artist @ and each term ¢ appearing in the retrieved
pages, we count the number of occurrences tf;, (term fre-
quency) of term ¢ in documents related to a. Furthermore, we
count df; the number of pages the term occurred in (document
frequency). These are combined using the term frequency x
inverse document frequency (¢f x idf) function [18]. The term
weight per artist is computed as

Wea = (1 + 10g2 tfta) 10g2 %7 if tfta > 0 (2)
0, otherwise

where N is the total number of pages retrieved.

As a result, each artist is described by a vector of term
weights. The weights are normalized such that the length of the
vector equals 1 (cosine normalization). This removes the influ-
ence that the length of the retrieved web pages would otherwise
have. Using this representation, similarities between artists can
be derived, for example, by calculating Euclidean distances.
However, combining this distance measure with the audio ap-
proach would not be practicable since only tracks by the same
artist could be assigned the minimum possible distance. This
would inhibit transitions between songs performed by different
artists. Thus, we prefer a dichotomic way of combining the two
similarity sources, which is elaborated upon next.

C. Combining Both Approaches

After having determined audio similarities between indi-
vidual audio tracks and web-based artist profiles, we join both
sources to create one distance matrix that serves as input to
a TSP algorithm. In general, we adapt the audio-based track
distances by adding penalties to the transitions between songs
by dissimilar artists. More precisely, we redefine artist simi-
larity using a SOM [8] that is trained on the set of web-based
term weight vectors. We define two artists to be similar if they
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Fig. 2. The 4 x 4 SOM trained on the web-based features. For reasons of
lucidity, genres instead of individual artists are depicted. The values in brackets
represent the percentage of artists from the corresponding genre which are
mapped to the respective map unit. If no value is given, the unit contains all
artists from the respective genre.

are mapped to the same unit or to adjacent units of the SOM.
The 4 X 4 SOM resulting from our evaluation collection (cf.
Section V) is depicted in Fig. 2. The size of the SOM was
chosen arbitrarily; newer experiments have actually shown that
6 x 6 might be better for this collection. The penalty is a large
constant value? that is added to the audio-based distance matrix
for all songs of dissimilar artists in the sense explained above.

D. Using the TSP for Playlist Creation

The task of generating a playlist based on the above simi-
larity matrix is mapped to the TSP, which is a classical problem
in computer science. In its basic form, it is formulated as fol-
lows: A salesman needs to visit n cities, each of them once. The
distances (or costs) to travel between the cities are known. The
problem is to find the optimal (i.e., shortest or cheapest) route
to visit all cities exactly once, and return to the originating city.

In our setup, the cities (i.e., nodes of a graph) correspond to
the tracks in the collection, and the distances (edges) are deter-
mined by the similarities between the tracks. Finding the op-
timal route means producing a circular playlist that contains all
tracks of the collection, and in which the sum of the similarities
along the path is maximized.

IV. TSP ALGORITHMS

In this section, algorithmic aspects of the TSP are discussed.
First, we give some general remarks, then we mention which as-
pects should be regarded in the specific case of similarity data,
and finally we give a short description of the algorithms we
evaluated.

2We used one half of the maximum audio-based distance.
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A. General Remarks

The TSP is NP-hard, which implies that there is no known
algorithm that calculates the exact result fast for large data sets.
For example, the state of the art approach for the exact solution
based on cutting planes and linear programming, would take
more than 90 years of CPU time3 for 24 978 cities.

Many heuristics have been proposed that approximate the
correct result. We selected four of them for evaluation. We did
not use an exact algorithm as the results would hardly be dif-
ferent but computation times would be much greater.

B. Domain-Specific Issues

A number of heuristic TSP algorithms require the distance
measure d between the nodes to satisfy the triangle inequality
d(ac) < d(ab) + d(bc) for all triples a, b and ¢. In our scenario,
the triangle inequality is not fulfilled by the similarity measure
we used in our experiments.# On the audio similarity matrix
constructed from our test data, it does not hold in about five
percent of the cases when comparing randomly chosen direct
and alternative edges.

According to [19], it can be proven that for nonmetric prob-
lems, it is impossible to construct an algorithm of polynomial
complexity which finds tours whose length is bounded by a con-
stant multiple of the optimal tour length (see also [20]).

C. Evaluated Algorithms

In the following sections, the algorithms we evaluated are
described briefly. For a more detailed discussion, the interested
reader is referred to the literature.

1) Greedy Algorithm: The first algorithm we evaluated is a
popular simple greedy algorithm, e.g., [21]. The algorithm starts
with no connected nodes. All edges are examined in order of
increasing length. An edge is added to the initially empty set of
edges if the resulting set of edges can still be combined to a valid
tour. For m edges, this algorithm has a runtime of O(m logm),
as the most expensive step is to sort the edges in ascending order.

2) Minimum Spanning Tree: This algorithm (e.g., [22]) was
evaluated although it makes the assumption that the triangle in-
equality is fulfilled, which is not the case on the data we used.
First, a minimum spanning tree is found with a standard al-
gorithm (Kruskal algorithm) in O(m logm), with m being the
number of edges. Afterwards, a depth-first search is performed
on the minimum spanning tree, and a tour is constructed by con-
necting the nodes in the order they are first visited during the
depth-first search. (For convenience, we call this whole algo-
rithm MinSpan in this paper). On data that satisfies the triangle
inequality MinSpan produces a tour that is guaranteed not to be
longer than twice the optimum tour.

3) LKH: The LKH algorithm [20] is an optimized version of
the Lin-Kernighan algorithm proposed by Lin and Kernighan
in 1971. The LKH algorithm starts with a randomly generated
tour and improves it incrementally by deleting A edges from the
route and recombining the remaining tour fragments in a more

385 years to prove that the tour—found by a heuristic algorithm—is the
shortest (http://www.tsp.gatech.edu/sweden/index.html).

“Even if it were, adding the penalty would break this condition.
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efficient way. In each step, sophisticated heuristics are used to
choose A and the edges to exchange.

The runtime of the LKH algorithm is approximately O(n?2),
with n being the number of nodes.

4) One-Dimensional Self-Organizing Map (SOM): To assess
if an algorithm based on clustering yields better results in terms
of constancy of genre membership, also a SOM algorithm was
evaluated.>

A SOM algorithm clusters the input data by assigning m
input points to n points called units. During the (stochastic)
clustering process, the position of each unit and the assignment
of data points to units is refined iteratively. Usually, n < m,
i.e., there are many more data points than units. SOMs have
the property that they are able to project high-dimensional data
into lower dimensional spaces while preserving distance rela-
tionships to a large extent. In our experiment, we train a one-di-
mensional (1-D) cyclic SOM, i.e., the units are arranged in a
circular fashion. The one dimension corresponds to the position
on the linear playlist.

Ideally, there would be as many units as tracks, so that after
training, each unit would have exactly one assigned track. But
since the runtime for training such a SOM is too long, we de-
cided to use a recursive approach. After training the SOM, each
track is assigned to the closest unit. If more than one track gets
assigned to a specific unit, the algorithm is run recursively for
the tracks that are assigned to this unit. The resulting smaller
routes are combined in a greedy manner (cf. Algorithm 1). Be-
fore using the algorithm, the dimensionality is reduced by in-
terpreting each column of the distance matrix as a vector and
applying PCA on them. Only the first 30 components of the
PCA-compressed data were used.

Algorithm 1: Recursive Algorithm based on SOM.

1: train a 1-D cyclic SOM with k units on the input points
2: for each input point, get the best matching unit of the
trained SOM
{calculate the k smaller tours (“subtours”) recursively:}
for each unitu; (¢ = 1...%) do
get the input points P; belonging to the current unit w;
if |P; > 1| build a tour through P; recursively
store the point (or tour) in ¢;
end for
{combine the subtours, in a greedy manner}:
break up each subtour at its longest edge
9: get all edges that could combine two consecutive subtours,
store them in £
10: sort E in ascending order
11: while tour is not complete do
12:  if next longer e € E can be part of a valid tour then
13: add it to the (still uncomplete) tour
14: end if
15: end while

AN A

o]

SWe used the Netlab toolbox, which is available at http://www.ncrg.
aston.ac.uk/netlab/index.php.
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V. EVALUATION AND RESULTS

This section describes how the performance and differences
between the audio-only approach and the combined approach
were evaluated using the various TSP algorithms. First, we
present the test collection on which the evaluation was per-
formed. Then, several evaluation approaches are described. For
each evaluation approach, its concept is outlined, and the results
obtained are briefly discussed. Furthermore, we present setup
and results of a user study which we conducted to assess the
quality of the playlists generated by the combined approach.

For computing the similarity matrix, we used an in-house
collection containing 2 545 tracks from 13 genres: A Cappella
(4.4%), Acid Jazz (2.7%), Blues (2.5%), Bossa Nova (2.8%),
Celtic (5.2%), Electronica (21.1%), Folk Rock (9.4%), Italian
(5.6%), Jazz (5.3%), Metal (16.1%), Punk Rock (10.2%), Rap
(12.9%), and Reggae (1.8%). Altogether, the collection con-
sisted of tracks by 103 artists, whose names were used to query
the web as described above. For each artist, at minimum eight
tracks were in the collection. The maximum number of tracks
by an individual artist was 61.

Regarding the runtimes of the algorithms, extracting the fea-
ture data and calculating the distance matrix are by far the most
time consuming steps, taking several days. The runtimes of the
TSP algorithms are much faster. On our evaluation collection,
exemplary runtimes are 25 s for the MinSpan algorithm, 62 s
for the simple greedy algorithm, 328 s for the SOM-based al-
gorithm (taking additionally 245 s for the PCA step), and 132 s
for the LKH algorithm (plus 36 s of data preprocessing).

A. Fluctuations Between Genres

To assess the genre transitions that occur most frequently
along the path, Fig. 3 summarizes the genre memberships of
pairs of tracks that follow immediately in the playlist for the
LKH algorithm. In both cases, the most frequent genre transi-
tion is from Acid Jazz to Electronica. In our experiments, we
use genre memberships as an indicator, as we assume that very
similar pieces belong to the same genre.

B. Shannon Entropy

To estimate how “locally coherent” a playlist is, the entropy of
the genre distribution was calculated on short sequences of the
playlists: It was counted how many of n consecutive tracks be-
longed to each genre. The result was normalized and interpreted
as a probability distribution, on which the Shannon entropy was
calculated. The Shannon entropy is defined as

H(z) ==Y p(z)log,p(z) 3)

with log, p(z) = 0if p(z) = 0.

In Fig. 4, the entropy values for n = 2...12 are given, aver-
aged over the whole playlist (i.e., each track of the playlist was
chosen once as the starting track for a sequence of length n).
12 was chosen as the maximum length because a typical album
contains about 12 tracks.

The most important finding is that even the worst-performing
algorithm (SOM) yields better results on web-enhanced data
than the best (LKH) on audio-only data.

audio—only LKH
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Fig. 3. Genre fluctuations for the best tour found by the LKH algorithm on the
audio-only data (upper figure) and on the combined data (lower figure). Rows
are the genres of the first track, and columns are the genres of the track following
immediately in the playlist. Genres are: A Cappella, Acid Jazz, Blues, Bossa
Nova, Celtic, Electronica, Folk Rock, Italian, Jazz, Metal, Punk Rock, Rap, and
Reggae, denoted by the first three characters.

C. Long-Term Consistency

Complementary to the short-term development measured by
the entropy, it is also interesting to assess the long-term devel-
opment of the generated playlists. To this end, Fig. 5 shows the
distribution of each genre over the whole playlist. We decided
to include the result with the worst overall impression with re-
spect to this aspect (top), the best result that has been achieved
on audio data (middle), and the best overall result (bottom).

Obviously, the playlist generated by the simple greedy algo-
rithm on audio data is highly fragmented. In the diagram for the
MinSpan algorithm, a diagonal-like arrangement becomes ap-
parent. The genres tend to concentrate at certain regions. This
demonstrates that our approach is able to produce reasonable
playlists based purely on audio content. These results can be
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Fig. 5. Long-term distribution of the genres for the playlists generated by the
simple greedy algorithm on audio similarity data (top), the MinSpan algorithm
on audio similarity data (middle), and the SOM algorithm on combined data
(bottom). For better visibility, the values are blurred using a low-pass filter: for
each track, it is counted how many of the following 75 tracks in the playlist have
a particular genre. Full white represents 0, full black 75. In each diagram, the
genres are ordered by the index where most pieces of that genre are accumulated.
This point was determined by applying a window of length n, where n is the
number of pieces in that genre. Thus, in the optimum case a playlist would tend
to result in a diagonally descending sequence of black bars. Note that there is
no canonical sequence of genres.
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Fig. 6. Long-term genre entropy values for the range from 160 to 318 tracks,
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further improved by using our audio-and-web-combining simi-
larity measure, as can be seen by the outcome of the SOM algo-
rithm. This is at least circumstantial evidence that we are able
to arrange music in a manner that is understandable to humans.
To quantify the visual impressions of the diagrams in Fig. 5,
we use the same measurement as in Section V-B at a longer
timescale. This time, we do not want to assess how well tracks
match that are played in a sequence, but we want to know how
clearly defined the type of music is in a certain region of the
wheel. For this purpose, we assume that a user would expect
the music to be consistent in an angle of about 22.5 to 45 de-
grees. Fig. 6 gives the values obtained on our test collection for
this range, together with the possible minimum and maximum
value for each region size. We assume that lower entropy values
indicate a more intuitive arrangement of the music since they
represent fewer genre transitions. This assumption is confirmed
when comparing the entropy values to the diagrams in Fig. 5
(and those figures not depicted here). Furthermore, it is inter-
esting to note that in the long term genre distribution, the best
audio-only based approach (i.e., audio minSpan) yields slightly
better results than two of the algorithms that ran on the com-
bined data. This gives an indication that the choice of the TSP
algorithm is as important as improving the data it runs on.

D. Alternative Music Collection

To study the robustness of our approach with respect to dif-
ferent music collections, we compiled a second, larger collec-
tion which was also used for the user study described in the
next section. It contains 3456 tracks (by 339 artists) assigned
to 7 general, quite evenly distributed genres: Classical (14.7%),
Dance (15.0%), Hip-Hop (14.5%), Jazz (13.6%), Metal (14.
9%), Pop (11.6%), and Punk (15.6%). The minimum number
of tracks per artist is 1, the maximum 317.

The evaluation results of the second collection are largely
comparable to those obtained with the first one. The number of
genre transitions present in playlists generated from the second

6Note that the minimum depends on the number of pieces in each genre and
on each genre appearing as a closed block in the playlist, but not on the order in
which the genres are arranged.



POHLE et al.: “REINVENTING THE WHEEL”: A NOVEL APPROACH TO MUSIC PLAYER INTERFACES 573

TABLE I
RESULTS OF BOTH EVALUATION MEASURES OF THE USER STUDY. BOLD FACED
ENTRIES INDICATE SUPERIOR RATING FOR OUR TSP-APPROACH

[Playlistno. | 1] 2] 3] 4] 5[ 6] 7] 8] 9[10] 3|
S tsp 48| 36| 26| 27| 38| 41| 36| 50| 50| 23| 375
> gen 34| 16| 42| 36| 33| 36| 28| 37| 39| 40|| 341
ratio 14| 2.3/0.6/0.8/1.2{1.1{1.3{1.4[1.3|0.6 1.1

[#p0s : #neg [[10:0]10:0]0:9]2:5]5:1[4:0]6:2]8:0[8:0]0:9[[53:26

collection is consistently lower than that of the first one. Also,
the values for the long-term entropy are always lower for the
second collection. This is no surprise, since the second collec-
tion contains three times as many artists as the first but only half
as many genres.

E. User Study

To get an impression of the “usefulness” of the resulting
playlists, we carried out a small user study on 10 test persons
Jj € [1,10], using the second test collection. We created a
large playlist with the MinSpan algorithm and the combined
similarity measure. From this, we extracted ten seed tracks
by randomly choosing a starting point on the “wheel” and
consecutively selecting tracks at intervals of 36 degrees. From
each seed track we created two playlists—one by sequentially
adding the next nine tracks from the “wheel” (denoted by tsp;
in the following), the other by randomly adding nine other
tracks from the same genre as the seed track (gen;). Each test
person had to rate each playlist with respect to overall musical
consistency on a scale ranging from 1 (“totally inconsistent’)
to 5 (“completely smooth transitions”). Furthermore, is was
possible to add remarks to every playlist, from which we gained
deeper insights into the ratings.

To evaluate the resulting ratings, we compute two measures
for each pair of playlists tsp, and gen;. We obtain the first mea-
sure by simply summing up the rating scores for both types of
playlists over all users and calculate the ratio of the tsp-based
score and the gen-based score, i.e., >, tsp; ;/ >, gen; ;. For
the second measure, we calculate the difference tsp, ; — gen, ;,
for each pair and test person, and count the number of positive
differences #,0s,; and negative differences #yeg,; Over all test
persons. The second measure is then the ratio #pos,i @ #neg,i-
Results from our evaluation can be found in Table I.

It can be seen that in seven out of ten cases, our TSP-based
playlist approach yields better user ratings than a straight-for-
ward genre-based shuffling approach. Noticeably, the difference
is less distinct for the first measure (375:341) than for the second
(53:26). This can be explained by the fact that a few unexpected
tracks in some playlists led to very low ratings, which is also ev-
idenced by the additional user comments. On the second mea-
sure, this effect has no impact.

F. Qualitative Evaluation

For subjective evaluation, a Java applet was programmed that
enables the user to quickly browse through the circular playlist
(cf. Fig. 1). As input device, the Griffin PowerMate” was used.
Non-representative small-scale usability and listening tests re-

Thttp://www.griffintechnology.com/products/powermate.

vealed that subjects generally liked the idea of such a sound
player.

As for the quality of the playlists, the findings of the con-
ducted user study (cf. Section V-E) were largely confirmed. In
general, consecutive tracks were perceived as sounding sim-
ilar. However, users got the impression that the path is not al-
ways fully straightened, i.e., musical regions are revisited after
leaving them.

As for the user interface, first impressions were quite positive.
The subjects remarked that the user interface is very intuitive
and its handling extremely easy. Users liked the feel of spinning
the PowerMate, but could also imagine to use the user interface
on Apple’s “iPod”. Since the PowerMate can be pressed, one
user suggested a “scanning” function to skip 10 s of the current
track when pressing it. A negative remark was that genres con-
taining only a few tracks are quite difficult to locate, another one
that the device is not usable when the aim is to find a specific
track in a collection. On the whole, users found the sound player
especially useful for listening to music in situations when they
cannot pay much attention to the handling of the device (e.g.,
while doing sports).

G. Summary of the Evaluation Results

We used several different measures to evaluate the TSP al-
gorithms and our two similarity measures. The results of these
evaluations are summarized in the following.

* Most importantly, all TSP algorithms provided better re-
sults with respect to our playlist evaluation criteria when
using the web based extension. However, the time con-
suming step of the web retrieval must be taken into account.

* We observed that the combined similarity measure re-
duces the number of unexpected placements of tracks in
the playlist, i.e., spontaneous transitions between tracks
from different genres.

» The LKH algorithm and the simple greedy algorithm have
the best small-scale genre entropy values. On the other
hand their large-scale genre distributions are quite frag-
mented. The SOM-based algorithm yields the highest en-
tropy values, but the least fragmented long-term genre dis-
tributions. The MinSpan algorithm was in the middle field
regarding the entropy values. The overall genre distribu-
tion was inferior to the one of the SOM-based approach.

The MinSpan algorithm and the SOM-based approach pro-
duce better overall genre distributions than the LKH and the
simple greedy algorithm. The most likely reason for that is that
locality constraints are regarded: in the SOM algorithm the
overall route is built by concatenating several local routes, and
in the MinSpan algorithm locality constraints are regarded as
the algorithm constructs the route by a depth-first search on a
minimum spanning tree.

As a final recommendation, it follows that either the SOM-
based algorithm or the MinSpan algorithm seem to be favor-
able. Furthermore, we can state that incorporating web-based
metadata is beneficial.

VI. CONCLUSION AND FUTURE WORK

We presented a new approach to conveniently access the
music stored in mobile sound players. The whole collection
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is ordered in a circular playlist and thus accessible with only
one input wheel. Consecutive tracks are aimed to be consistent
and maximally similar on average, thus ideally each track can
be chosen as the starting point of a locally consistent playlist.
Several algorithms were assessed with respect to their ability
to produce such playlists.

We implemented a demonstration application for a single-dial
browsing device. Such a device offers a new way to access
music collections, as tracks are arranged according to the un-
derlying similarity measure. We suggest two different similarity
measures—one relying on timbre information, the other on a
combination of timbre and community metadata gathered from
artist related web pages. It is worth mentioning that we present
one of the first works on combining the two research areas of
audio-based track similarity and community-based artist simi-
larity in a useful way.

The example application triggers positive reactions and pro-
vokes the user to play around with it. We used two music col-
lections for evaluation, one containing about 3 500 tracks from
very general genres, the other one containing more than 2 500
pieces from a mixture of quite specific and general genres. Due
to this large number of tracks in the test collections, with the cur-
rent device it is not possible to precisely select a desired piece.
It is still an open question how to deal with this situation. One
possibility would be to make only tracks selectable that are rep-
resentative for a region. Alternatively, zooming or hierarchical
structuring techniques could be applied.

Another drawback of the current version of the music player
is that the user does not know in advance which region on the
wheel contains which style of music. First steps towards a so-
lution can be found in [23], where we extended the player by
visualizing distributions of meta-data (e.g., genre) around the
wheel to facilitate browsing the collection.

On the whole, the results of the conducted user study
showed that people perceive the playlists generated with our
audio-and-web-combining similarity measure more consistent
than playlists generated by randomly selecting pieces within a
given genre.
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