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ABSTRACT

The contribution of this paper is threefold:
First, we propose modifications to Fluctuation Patterns

[14]. The resulting descriptors are evaluated in the task of
rhythm similarity computation on the “Ballroom Dancers”
collection.

Second, we show that by combining these rhythmic de-
scriptors with a timbral component, results for rhythm sim-
ilarity computation are improved beyond the level obtained
when using the rhythm descriptor component alone.

Third, we present one “unified” algorithm with fixed
parameter set. This algorithm is evaluated on three differ-
ent music collections. We conclude from these evaluations
that the computed similarities reflect relevant aspects both
of rhythm similarity and of general music similarity. The
performance can be improved by tuning parameters of the
“unified” algorithm to the specific task (rhythm similarity
/ general music similarity) and the specific collection, re-
spectively.

1 INTRODUCTION

Many of the rhythm descriptors proposed so far eventually
reduce the rhythm to a representation that discards infor-
mation about which frequency band the rhythmic feature
originates from. We begin this paper by asking: “Can the
performance of rhythm descriptors be improved by adding
frequency information?” To this end, we follow two di-
rections. First, we propose and evaluate descriptors that
retain information about the frequency range in which a
given rhythm feature (more precise: periodicity strength)
was measured. Related work in this direction includes
[10]. Second, we add frequency information in the form
of a “timbral” component (cf. [3]).

The paper is organized as follows. In Section 2, we
suggest a number of modifications to Fluctuation Patterns
(FPs) [14]. Relative to our evaluation setting, the mod-
ified variant seems to capture rhythmic similarity better
than the unmodified algorithm. In Section 3, we go on
by adding frequency information to the proposed rhythm
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descriptors in the form of a “timbral” component, and find
that in our evaluation setting, rhythm similarity computa-
tion is improved further this way. We consider this finding
as complementary to the practice of using rhythm descrip-
tors to improve the performance of (general) music simi-
larity measures (e.g., [14]). Based on this observation, we
design an algorithm that seems to perform well both in the
task of rhythm similarity and in the task of general music
similarity computation (Section 4). In our evaluation set-
ting, this combined algorithm outperforms approaches that
are specifically designed for the respective tasks.

2 GETTING THE RHYTHM

This section is dedicated to rhythm descriptors and their
evaluation on the Ballroom Dancers collection.

2.1 Rhythm Descriptors

Below, the rhythm descriptors evaluated in this paper are
described. These are the well-known Fluctuation Patterns,
and our proposed extensions Onset Patterns (OPs) and On-
setCoefficients (OCs).

2.1.1 Fluctuation Patterns (FPs)

Fluctuation Patterns (FPs) [14] measure periodicities of the
loudness in various frequency bands, considering a num-
ber of psychoacoustic findings. We use the implementation
of the MA Toolbox 1 with the proposed parameter set, so
that the frequency bands correspond to 20 critical bands.
Details about the computation are given e.g. in [14]. An
evaluation of the importance of the various psychoacoustic
processing steps in FP calculation is given in [10].

2.1.2 Onset Patterns (OPs)

We suggest a number of changes to FPs (cf. [4, 17, 18]).
To this end, a number of preliminary experiments was con-
ducted. The most important changes to FPs are listed here,
before the points are discussed in detail:

• Reduce the signal to the parts of increasing ampli-
tude (i.e., likely onsets).

• Use semitone bands to detect onsets instead of fewer
critical bands.

• Use Hanning window and zero padding before de-
tecting periodicities with FFT.

1 http://www.pampalk.at/ma/
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• Represent periodicity in log scale instead of linear
scale.

We only consider onsets (or increasing amplitudes) in
a given frequency band. To detect such onsets, we use a
cent-scale representation of the spectrum with 85 bands of
103.6 cent width, with frames being 15.5 ms apart. On
each of these bands, an unsharp-mask like effect is applied
by subtracting from each value the mean of the values over
the last 0.25 sec in this frequency band, and half-wave rec-
tifying the result. This aims to detect also slow-attack in-
strument onsets in melodies that have notes with only one
(or few) semitones apart. Subsequently, values are trans-
formed by taking the logarithm, and reducing the number
of frequency bands from 85 to 38 which is closer to the
number of critical bands.

As in the computation of FPs, segments of frames are
analyzed for periodicities. We use segments of 2.63 sec
length with a superimposed Hanning window, zero-padded
to six seconds. Adjacent segments are 0.25 sec apart. Each
of these segments is analyzed for periodicities in the range
from T0 = 1.5 sec up to about 13.3 Hz (40 to about 800
bpm), separately in each of the 38 frequency bands. A cru-
cial point in this transformation is that we do not represent
periodicities on a linear scale (as in FPs), but rather we use
a log-representation. Thus, after taking the FFT on the six
seconds of a given frequency band, a log filterbank is ap-
plied to represent the selected periodicity range in 25 log-
scaled bins. In this representation, periodicity (measured
in Hz) is doubled every 5.8 bins (i.e., going 6 bins to the
right means measuring a periodicity about twice as fast).
By using this log scale, all activations in an OP are shifted
by the same amount in the x-direction when two pieces
have the same onset structure but different tempi. While
this representation is not blurred (as done in the computa-
tion of FPs), the applied techniques induce a smearing in
the lower periodicity range (cf. Figure 1). After a segment
is computed, each of the 25 periodicities is normalized to
have the same response to a broadband noise modulated by
a sine with the given periodicity. This is done to eliminate
the filter effect of the onset detection step and the transfor-
mation to logarithmic scale.

To arrive at a description of an entire song, the values
over all segments are combined by taking the mean of each
value over all segments. We call the resulting representa-
tion of size 38 · 25 Onset Patterns (OPs). In this paper, the
distance between OPs is calculated by taking the Euclidean
distance between the OPs considered as column vectors.

2.1.3 OnsetCoefficients (OCs)

OnsetCoefficients are obtained from all OP segments of
a song by applying the two-dimensional discrete cosine
transformation (DCT) on each OP segment, and discard-
ing higher-order coefficients in each dimension. The DCT
leads to a certain abstraction from the actual tempo (cf.
[5, 18]) and from the frequency spectrum (like in MFCCs).
This is motivated by the notion that slightly changing rhythm
and sounds does not have a big impact on the perceived
characteristic of a rhythm, while the same rhythm played

Figure 1. FP and OP of the same song. Doubling of peri-
odicity appears evenly spaced in the OP. A bass drum plays
at regular rate of about 2 Hz. The piece has a tap-along
tempo of about 4 Hz, while the measured periodicities at
about 8 Hz are likely caused by offbeats in between taps.

with a drastically different tempo may have a different per-
ceived characteristic. For example, one can imagine that
a slow and laid-back drum loop, used in a Drum’n’Bass
track played back two or three times as fast, is perceived as
cheerful.

The number of DCT coefficients kept in each dimension
(periodicity / frequency) is an important parameter. The
selected coefficients are stacked into a vector. For example,
keeping coefficients 0 to 7 in the periodicity dimension,
and coefficients 0 to 2 in the frequency dimension yields a
vector of length 8 · 3 = 24. We abbreviate this selection as
7× 2. Based on the vectors for all segments, the mean and
full covariance matrix (i.e, a single Gaussian) is calculated,
which is the OC feature data for a song.

The OC distance D between two Songs (i.e., Gaussians)
X and Y is calculated by the Jensen-Shannon (JS) diver-
gence (cf. [11]).

D(X, Y ) = H(M)− H(X) + H(Y )
2

(1)

where H denotes the entropy, and M is the Gaussian re-
sulting from merging X and Y . We calculate the merged
Gaussian following [20]. We use the square root of this
distance.

2.2 Setup for Rhythm Experiments

We evaluate the rhythm descriptors on the ballroom dance
music set 2 previously used by other authors, e.g. [5, 4, 2,

2 data from ballroomdancers.com
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15, 7] and for the ISMIR’04 Dance Music Classification
Contest 3 . This set consists of 698 tracks assigned to 8
different dance music styles (“genres”). The classification
baseline is 15.9%.

The purpose of the descriptors discussed above is to
measure rhythmic similarity. For evaluation, we assume
that tracks that are in the same class have a similar rhythm.
To facilitate comparison to previous work [5, 4], we use a
1-nearest-neighbor (1NN) stratified 10-Fold cross valida-
tion (averaged over 32 runs) in spite of a certain variance
induced by the random selection of folds. We assume that
the only information that is available is the audio signal.
Using 1NN 10fold cross validation, [5] report up to 79.6%
accuracy.

When using more sophisticated classification algorithms
(and other features), higher accuracies are obtained. For
example, [2] report a classification accuracy of up to 82%
using only automatically computed features (i.e., without
using correct tempo annotation or manually corrected first
bar annotations). The highest classification accuracy we
are aware of is 86.9%, obtained by kNN classification [7].

The mentioned accuracies are obtained when the audio
signal is the only data source made available to the algo-
rithms. It has to be noted that the algorithms yield higher
accuracies when also the correct tempo annotation is given
as feature data. In this case (which is not considered in this
paper), an accuracy of 95.1% (or 96.0% when also human-
corrected bar annotations are used [2]) have been obtained.

2.3 Results for Rhythm-Only Descriptors

FPs as implemented in the MA toolbox, compared by Eu-
clidean distance, yield an accuracy of 75.0%. OPs com-
pared with Euclidean distance yield 86.7%. The results for
various settings of using only OnsetCoefficients for sim-
ilarity estimation are shown in Figure 2. It can be seen
that the highest values are obtained when keeping more
than 16 coefficients in the periodicity dimension and when
only keeping the 0th coefficient in the frequency dimension
(which corresponds to averaging over all frequencies). In
this range, values increase when including more periodic-
ity coefficients, which seems consistent with the findings in
[5]. In this range, we obtain an average value of 87.7% 4 .

3 ADDING “TIMBRE” INFORMATION

To examine how the discussed rhythmic descriptors can
be used in conjunction with “bag of frames” audio sim-
ilarity measures, we combine them with a “timbral” au-
dio similarity measure. The used frame-based features are
the well-known MFCCs (coefficients 0..15), Spectral Con-
trast Coefficients [9] (using the 2N approach [1], coeffi-
cients 0..15), and the descriptors Harmonicness and At-
tackness. The latter two describe the amount of harmonic
and percussive elements (cf. [13]) in a cent-scaled spectro-
gram with frequency bands being 66 cent and frames being

3 http://mtg.upf.edu/ismir2004/contest/rhythmContest/
4 We take the average rather than the maximum value as an indicator

due to variances introduced by 10fold CV.

46 ms apart. Percussive elements are detected by applying
a 5 × 5 filter with the kernel (-0.14, -0.06, 0.2, 0, 0) repli-
cated over five rows. The analogous filter to detect har-
monic elements has the form (−0.09,−0.01, 0.2,−0.01,
− 0.09)T , replicated over five columns. The Harmonic-
ness value for a frame is the sum of the half-wave recti-
fied responses of this filter centered at the frequency bins
of the considered frame. The frame’s Attackness value
is calculated the same way but using the filter for per-
cussive elements. Altogether, these are 34 descriptor val-
ues for a frame, which are combined over a song by tak-
ing their mean and full covariance matrix. Two songs are
compared by taking the Jensen-Shannon divergence as de-
scribed above.

We combine the discussed rhythm descriptors with this
timbral component by simply summing up the two distance
values (i.e., timbral and rhythm component are weighted
1 : 1). For comparison, e.g., in the G1C algorithm [14], FP
based features are weighted with 30%, and a MFCC com-
ponent is weighted with 70%. Our weighting decision is
not based on systematic evaluations but rather it is mainly
based on impressions gained from non-representative lis-
tening experiments. To bring the two distances (rhythm
based and timbre based) to a comparable magnitude, for
each song the distances of this song to all other songs in the
collection are normalized by mean removal and division by
standard deviation 5 . Subsequently, the distances are sym-
metrized by summing up the distances between each pair
of songs in both directions. This preprocessing step is done
for each component (timbral and rhythm) independently
before summing them up.

3.1 Combination Experiment

We repeat the experiment shown in Figure 2, but this time
combining the rhythm descriptors with the timbral com-
ponent as described. The 1NN 10fold cross validation ac-
curacy is 54.0% when considering only the timbral com-
ponent, 79.4% in combination with FPs, and 87.1% with
OPs. From the results in Figure 3, it can be seen that
classification results are improved when combining OCs
with the timbral component. This time, average results
of 90.2% are obtained over the parameter range discussed
above (compared to 87.7% in the the first experiment, Fig-
ure 2). The highest obtained 1NN accuracy is 91.3%.

Results are summarized in Table 1. The results for the
combined method are above the values obtained for each
component (rhythm and timbre) alone. We think this is an
indication that rhythm similarity computations can be im-
proved by including timbre information. This is in line
with [19] who reason that tempo can be detected better
when considering timbre information. In a way, this is
complementary to previous approaches where descriptors
of rhythmical properties were added to timbre descriptors
in order to improve music similarity computations (e.g. the

5 This is done once before splitting up training and test sets for clas-
sification. No class labels are used in this step. We expect the impact of
determining the normalization factors only on the respective (stratified)
training set to be negligible.
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Figure 2. Dance genre classification based on OnsetCoefficients; distances calculated according to Equation 1. 1NN 10fold
CV accuracies obtained on ballroom dataset when including coefficients 0 up to the given number in the respective dimen-
sion. For example, including coefficients 0..17 in the periodicity dimension and coefficients 0..1 in frequency dimension
(resulting in 18 · 2 = 36 dimensional feature data) yields an accuracy of 85.9%. Low results at right border are caused
by numerical instabilites when calculating the determinant during entropy computation. For better visibility, gray shades
indicate ranks instead of actual values.

Algorithm 1NN
Baseline 15.9%
FP 75.0%
OP 86.7%
OC up to around 87.7%
Timbre 54.0%
Timbre+FP 79.4%
Timbre+OP 87.1%
Timbre+OC up to around 90.2%

Table 1. Ballroom dataset: 10fold CV accuracies obtained
by the evaluated methods. The methods below the line are
combined by distance normalization and addition.

G1C algorithm [14]). This duality leads to the experiments
presented next.

4 THE “UNIFIED” ALGORITHM

Encouraged by the experiments presented in the previous
section, we examine the performance of this algorithm not
only in the task of rhythm similarity computation, but also
in the task of general music similarity. Our aim is to find
a selection of OCs that perform well in both tasks, which
eventually leads to a “unified” music retrieval algorithm
that reflects both rhythm and timbre similarity.

4.1 Data Sets

Music similarity experiments are performed on the set from
the ISMIR’04 genre classification contest (ISMIR’04) 6 ,
and on the “Homburg” data set (HOMBURG) [8]. Like the
ballroom set, these collections are available to the research
community, which facilitates reproduction of experiments
and gives a benchmark for comparing different algorithms.
There are two variants of the ISMIR’04 collection. The
first is the “training” set which consists of 729 tracks from
six genres. The second consists of all the tracks in the
“training” and “development” sets, which are 1458 tracks

6 http://ismir2004.ismir.net/genre contest/index.htm

from six genres. We use the central two minutes from each
track. The HOMBURG set consists of 1886 excerpts of 10
seconds length.

4.2 Combination Experiment

In this section, we conduct a similar experiment as in Sec-
tion 3.1 on the ISMIR’04 training collection. The aim is to
evaluate the impact of OCs on the performance in general
music similarity computation (i.e., not limited to rhythm
similarity). The results from these experiments are used
to create the “unified” algorithm, which will then be eval-
uated on all three collections (including the HOMBURG
collection).

Following previous work [1, 14], we take genre classi-
fication accuracy as an indicator of the algorithm’s ability
to find similar sounding music. We use the same evalua-
tion methodology as before. The timbre component alone
yields 83.8%. Combining it with FPs as described, ac-
curacy drops to 83.6%. Using OPs instead, accuracy in-
creases to 85.2%. With OCs, accuracy can be improved up
to 87.8% in the parameter range shown in Figure 4. This
figure shows an outlier for 19 × 0 OCs, for which unfor-
tunately we did not find an obvious explanation such as
outliers in the distance matrix or numerical instabilities.
Comparing Figures 3 and 4, it seems that a good tradeoff
between the two collections is found when using 16 × 1
OCs. This selection yields 17 ·2 = 34-dimensional feature
data, i.e., the rhythm feature data consists of a mean vector
of length 34 and a covariance matrix of size 342 = 1156.

4.3 Final Evaluation and Optimization

In Table 2, 10fold CV results obtained with this setting are
listed. For comparison to previous work, also the highest
classification accuracies obtained so far that we are aware
of are listed. These accuracies refer to methods only us-
ing audio descriptors without additional human-annotated
clues. On all three collections, the results of the “unified”
algorithm are above these previously reported results.
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Figure 3. Combination of OCs with timbral component on the ballroom dancers collection, 1NN 10fold cross validation.

Figure 4. Combination of OCs with timbral component, ISMIR’04 training collection.

Collection 1NN highest kNN Literature
(obtained at k)

Ballroom 88.4% 89.2% (k=5) 86.9% [7]
ISMIR’04 train 87.6% 87.6% (k=1) 84.0% [16]
ISMIR’04 1458 90.4% 90.4% (k=1) 83.5% [6]
HOMBURG 50.8% 57.0% (k=10) 55% [12]

Table 2. Accuracies obtained by the “unified” algorithm
on the various collections.

While these results show that our “unified” algorithm
outperforms the respective specialized approaches, we ob-
serve that when tuning to the particular collections, our
techniques can be used to obtain even higher accuracies.
For these experiments, we use leave-one-out evaluation for
two reasons. First, doing 10fold cross validation (and re-
peating it several times for averaging) has a clearly longer
runtime, as we evaluate a fixed matrix of pairwise dis-
tances. Second, in the 10fold cross validation experiments,
we observe a certain variance between repeated experi-
ments.

Our non-exhaustive tuning experiments indicate that
even the normalization step used to combine two measures
(Section 3) alone in some cases increases accuracy. On the
Ballroom Dancers collection, a 3NN accuracy of 91.8%
is obtained when including normalised OCs up to 24 ×
0. Using only the normalised timbre component, on the
ISMIR’04 training set a 1NN accuracy of 88.8%, and on
the full ISMIR’04 set an accuracy of 91.8% is reached.
On the HOMBURG set, 11NN classification using only

the normalised timbre component yields 58.4%.
Common sense indicates that the “unified” algorithm is

a better choice for similarity estimation than such tuned
variants, as the tuned variants do not perform well on all
collections. In particular, these experiments show that dis-
carding the rhythm component and using the timbre com-
ponent alone, higher accuracies than those of the “unified”
algorithm are obtained both on the ISMIR’04 set and the
HOMBURG set. But with this setting, accuracy decreases
clearly on the “Ballroom Dancers” collection. This may
indicate the existence of an evaluation glass ceiling in the
sense that an improved general music similarity algorithm
might even yield lower accuracies.

5 CONCLUSIONS

We have presented modifications of Fluctuation Patterns
(FPs) that can be used to obtain higher classification accu-
racies on the audio signal of the “Ballroom Dancers collec-
tion” than FPs compared by Euclidean distance. By adding
frequency information to these proposed rhythm descrip-
tors in the form of a “timbral” component results are fur-
ther improved.

Based on these results, we suggest a “unified” algo-
rithm. The presented experiments indicate that the simi-
larities computed by this algorithm both reflect aspects of
rhythm similarity and aspects of general music similarity.
In both respects, classification accuracies obtained in our
test setting are at least comparable to those previously re-
ported for algorithms specifically designed for the respec-
tive tasks.

Going beyond this, presented preliminary results show
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that by using different parameter settings (including selec-
tion of used OCs, and relative weighting of timbral and
rhythm component) for different collections, the accura-
cies obtained with the “unified” algorithm can be further
improved. As by doing so, one loses the generality of the
algorithm, we refrain from further optimizations in this di-
rection.

6 ACKNOWLEDGMENTS

This work is supported by the Austrian Fonds zur Förderung
der Wissenschaftlichen Forschung under project number
L511-N15.

7 REFERENCES

[1] Jean-Julien Aucouturier and Francois Pachet. Improv-
ing timbre similarity: How high is the sky? Journal of
Negative Results in Speech and Audio Sciences, 1(1),
2004.

[2] Simon Dixon, Fabien Gouyon, and Gerhard Widmer.
Towards characterisation of music via rhythmic pat-
terns. In Proc. International Conference on Music In-
formation Retrieval (ISMIR’04), 2004.

[3] A. Flexer, F. Gouyon, S. Dixon, and G. Widmer. Prob-
abilistic combination of features for music classifica-
tion. In Proc. International Conference on Music In-
formation Retrieval (ISMIR’06), 2006.

[4] Fabien Gouyon and Simon Dixon. Dance Music Clas-
sification: A Tempo-Based Approach. In Proc. Inter-
national Conference on Music Information Retrieval
(ISMIR’04), 2004.

[5] Fabien Gouyon, Simon Dixon, Elias Pampalk, and
Gerhard Widmer. Evaluating rhythmic descriptors for
musical genre classification. In Proc. AES 25th Inter-
national Conference, 2004.

[6] A. Holzapfel and Y. Stylianou. Musical genre classi-
fication using nonnegative matrix factorization-based
features. IEEE Transactions on Audio, Speech, and
Language Processing, 16(2):424–434, 2008.

[7] Andre Holzapfel and Yannis Stylianou. A scale trans-
form based method for rhythmic similarity of music.
In Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2009.

[8] Helge Homburg, Ingo Mierswa, Bülent Möller, Katha-
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