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Abstract. Despite their many identified shortcomings, music genres are
still often used as ground truth and as a proxy for music similarity. In
this work we therefore take another in-depth look at genre classification,
this time with the help of music experts. In comparison to existing work,
we aim at including the viewpoint of different stakeholders to investigate
whether musicians and end-user music taxonomies agree on genre ground
truth, through a user study among 20 professional and semi-professional
music protagonists. We then compare the results of their genre judgments
with different commercial taxonomies and with that of computational
genre classification experiments, and discuss individual cases in detail.
Our findings coincide with existing work and provide further evidence
that a simple classification taxonomy is insufficient.
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1 Introduction
In the last 20 years, almost 500 publications have dealt with the automatic recog-

nition of musical genre [15]. However, genre is a multifaceted concept, which has

caused much disagreement among musicologists, music distributors, and, not

least, music information retrieval (MIR) researchers [12]. Hence, MIR research

has often tried to overcome the “ill-defined” concept of genre [10, 1]. Despite all

the disagreement, genres are still often used as ground truth and as a proxy for

music similarity and have remained important concepts in production, circula-

tion, and reception of music in the last decades [3]. Their relevance for music

perception is evidenced by studies that show the existence of common ground

between individuals, e.g., [7, 13], their importance in users’ music similarity as-

sessment [9], and their recognizability within fractions of seconds [4, 6]. As a

result, genre classification remains a relevant task in MIR research [8, 11].

In comparison to work on optimising genre classification, work discussing

ground truth for MIR, and in particular work discussing the viewpoint of differ-

ent stakeholders, is scarce. For this reason, in this work, we investigate whether

musicians and end-user music taxonomies agree on genre ground truth by com-

paring different commercial taxonomies and discussing individual cases in detail.

The remainder of this paper is organised as follows. We first discuss related

work on defining and investigating genre ground truths (Section 2), then present
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our study involving music experts (Section 3). Subsequently, the results of our

study are discussed in detail, including a thorough review of selected artists and

songs (Section 4). The paper is rounded off by concluding remarks (Section 5).

2 Related Observations on Genre Ground Truth
The original version of [4] from 1999 is much cited although it has been un-

available in print until the re-release in 2008. The authors chose the following

10 genres: blues, classical, country, dance, jazz, latin, pop, R&B, rap and rock.

52 university students representing “ordinary undergraduate fans of music” lis-

tened to excerpts from eight songs of each genre. The excerpts varied in length

from 250 ms to 3,000 ms. Genre classification was taken from CDnow, BMG

and Tower Records, the leading web based music vendors of the nineties. When

listening to the 3,000 ms excerpts participants agreed with the ground truth

about 70% of the time. When participants were only allowed to listen to 250 ms

excerpts the accuracy varied greatly with genres, with less than 20% accuracy of

blues songs, but over 70% accuracy of classical songs, with the average across all

genres being 44%. A study with a small group of music theory majors revealed

essentially the same results as with the non-musicians in the main study.

Lippens et al. [7] compared the results of automatic genre classification and

human genre classification on the MAMI dataset. The MAMI dataset consists of

160 full length songs, originally classified into 11 genres. They concluded that due

to various reasons this classification was not fit for automatic genre classification

and therefore conducted a user study with 27 human listeners. Each participant

listened to a 30-second-excerpt from all the songs and classified each song into

one of six genres. The outcome from that study was as follows: 69 pop, 25 rock,

24 classical, 18 dance, 8 rap, and 16 other, with the genre “other” being used

for songs that did not fit into any of the first five genres. The next step was to

compare the selected genre of each participant with this new ground truth. The

accuracy of the 27 participants ranged from 57% to 86% averaging at 76%. A

subset of the MAMI dataset, called MAMI2, was then created. It included songs

from the first five genres mentioned above, and only songs that had received 18

or more votes for their particular genre. This resulted in 98 tracks. The average

classification accuracy of the participants for this dataset was 90%.

Craft et al. [2] criticized how the MAMI2 dataset was created, and claimed

that it was “not statistically well-founded”. Their argument was that the meaning

of the genre “other” was undefined to the participants, resulting in different ways

of using that genre: should participants only use it for songs that did not find

a home in any of the other genres or should they also use if a song features

multiple genres? They examined the songs that did not make it into the MAMI2

dataset and found out that only one of these songs received 10 votes for “other”,

one song received seven votes, but the remaining songs received five or fewer

votes for the “other” genre. The authors then constructed a similarity graph of

all songs in the MAMI dataset, where songs with similar distribution of genre
votes were grouped together. It turned out that there were groups of tracks that

spanned multiple genres, and there were genres that spanned multiple groups

of similar tracks. The main conclusion of the paper was that it is unrealistic to

try to create a genre classification dataset that is entirely unambiguous, since

Proc. of the 13th International Symposium on CMMR, Matosinhos, Portugal, Sept. 25-28, 2017

46



Music Genre Classification Revisited 3

real life datasets do not only contain unambiguous data. They proposed that all

results from automatic genre classification systems should be weighted to reflect

the amount of ambiguity of human classification of that same dataset.

The most commonly used dataset, GTZAN, introduced in the archetypal

work in the field of genre recognition by Tzanetakis and Cook [16], contains 10

musical genres, namely: classical, country, disco, hiphop, jazz, rock, blues, reggae,

pop, and metal. Despite its wide acceptance and reuse in subsequent studies, it

exhibits inconsistencies, repetitions, and mislabeling as investigated in detail by

Sturm [14].

1
Apart from challenging the notion of categorizing music pieces into

exclusive genres, Sturm argues convincingly that the errors in the genre assign-

ments make results stemming from different approaches non-interpretable and

incomparable, as different machine learning algorithms are affected in different

ways. Despite the already identified shortcomings of GTZAN, we investigated

parts of this dataset with the help of musical experts to gain further insights.

3 User Study with Music Experts
For our user study, we asked music experts to classify selected tracks of the

GTZAN dataset. To keep the workload low, we chose examples that were mis-

classified by a k-NN classifier (see below), since these seem to be difficult, mis-

labeled, or exhibit other particularities that justify a deeper investigation.

Using a new, very efficient k-NN classifier [5] with k = 3 on features consisting

of MFCCs and spectral flatness measure (SFM) extracted through MARSYAS

(http://marsyas.info) we reach a genre classification accuracy of 80.8% in a

10-fold cross validation setting, which closely matches the best results in the

literature obtained using these particular features. That leaves 192 tracks mis-

classified, however, which are distributed over genres as illustrated in Figure 1.

To analyse these tracks in more detail we set up an experiment where 20

participants listened to the 192 wrongly classified songs. The participants are

all active in the Icelandic music industry, either as musicians, producers, sound

engineers, or DJs, and include both semi-professionals and professionals. More

precisely, among the semi-professionals we included a singer/songwriter who has

released two albums, but never received the recognition necessary to completely

quit his day job, a DJ at a local club in Akureyri who also works at a com-

puter store, a guitarist and singer in a wedding/club band who has a day job

as a painter, and a music blogger who works in a factory during the day. The

professionals includes a radio DJ at one of Iceland’s biggest radio stations, a gui-

tarist and guitar teacher at the Akureyri School of Music, a drummer and drum

teacher at the Akureyri School of Music, and a music producer and recording

engineer.

Each participant received a list of the 10 genres of the GTZAN dataset

2
and

then listened to the 30-second-clips for all 192 misclassified tracks, marking each

track with the genre label that they felt best described that song. The listening

environment was a quiet room with a high fidelity stereo system.

1 George Tzanetakis, the author of the dataset, has repeatedly confirmed being aware
of these issues, but has chosen not to correct them since the dataset has been used
so many times and changing the files would render comparisons of results infeasible.

2 The genre “classical” was included even though no track was classified as such.
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Fig. 1. Genre distribution of the 192 misclassified songs used in our user study.

While the dataset contains no information about artists or song names, lis-

tening to the songs reveals several interesting facts, including two mistakes in

its creation. First, a live version of the song “Tie your mother down” by Queen

is included twice, once labelled as rock and once labelled as metal. During k-NN

search both versions get wrongly classified since the version labelled rock gets

all its votes from the version labelled metal and vice versa. Second, one reggae

sound clip is faulty, with only 6 seconds of music and 24 seconds of loud noise.

It is interesting to note that the k-NN classifier labels this noise as pop.

The set often includes several songs by the same artists. Out of these 192

songs 7 songs are by Sting, 6 by Jethro Tull and 4 by Rolling Stones. Other artists

that have multiple songs include Black Sabbath, Led Zeppelin, Beastie Boys, Bob

Marley, Willie Nelson, Alanis Morrisette, Vince Gill and Guns’n’Roses. All Sting

songs are from his first two albums “Dream of the Blue Turtles” and “Bring on

the Night” where Sting uses famous jazz musicians including Branford Marsalis

on saxophones and Kenny Kirkland on pianos. All these Sting songs are classified

as rock by Tzanetakis, whereas participants were divided between pop and jazz.

The Jethro Tull songs included such diverse songs as “Happy and I’m smiling”,

“Bungle in the Jungle” and “Life is a love song”. Again were all songs considered

rock by Tzanetakis. Most were also classified as rock by participants, while some

were classified as pop. Many commented that “Life is a love song” is really folk

or acoustic, but no such genre is included in the set.

4 Results
4.1 Comparison with GTZAN Ground Truth and k-NN Classifier

Table 1 compares the manual classification of the music experts to the ground

truth of the GTZAN dataset. The table shows that the agreement between in-

dividual participants and the ground truth ranges from 52.6% to 69.8%, and is
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Participant GTZAN ground truth k-NN classifier

Agreement Songs Percentage Songs Percentage

Lowest 101 52.6% 15 7.8%
Highest 134 69.8% 34 17.7%
Median 112 58.3% 25 13.0%
Average 113.4 59.1% 24.9 13.0%

Majority vote 122 63.5% 24 12.5%

Table 1. Participants’ agreement with the ground truth and the k-NN classifier. Agree-
ment is the share of songs participants described with the same genre as the ground
truth given by the GTZAN dataset (3rd column) and as the prediction of the classifier
(rightmost column).

on average 59.1%. Agreement is defined as the share of songs participants anno-

tated with the same genre as the ground truth given by the GZTAN dataset (3

rd

column) and as the prediction of the classifier (5

th
column). The table reports

results at different levels of agreement/types of users, e.g., the user with the low-

est agreement in row "Lowest"; analogously for the other rows. For instance, the

participant (out of the 20) who agreed the least with the ground truth agreed

with the classification of 101 songs (out of the 192), or 52.6%, and he agreed

with the classification of k-NN on only 15 songs (out of the 192).

These numbers should not be compared with the results from [4] and [7] since

the dataset used for this experiment was specifically chosen because the auto-

matic genre classifier was not able to classify the songs correctly. It is, however,

interesting to note the low agreement rate on these songs. Table 1 also shows the

number of tracks where the participants agreed with the results of the k-NN clas-

sifier; remember that these tracks were all wrongly classified by the automatic

classification. It is interesting that for nearly 27% of the tracks, participants

agreed neither with the GTZAN ground truth nor the k-NN classifier.

We then created a new ground truth using the majority vote of the 20 par-

ticipants. As the last line of Table 1 shows, this new ground truth agrees with

the GTZAN ground truth for 63.5% of the 192 tracks, and with the k-NN clas-

sifier for 12.5% of the 192 tracks; for 24% of the tracks the new ground truth

agrees with neither. To examine closer how much the participants agreed, we

used this new majority vote as ground truth. Table 2 confirms that there is

Participant Agreement Songs Percentage

Lowest 121 63.0%
Highest 166 86.5%
Median 153 79.7%
Average 150.3 78.3%

Table 2. Participants’ agreement with “majority vote” ground truth. Agreement is
defined as in Table 1.
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GTZAN ground truth k-NN classifier

Genre Songs Percentage Songs Percentage

Blues 6 85.7% 1 14.3%
Country 29 85.3% 1 2.9%
Disco 10 50.0% 6 30.0%
Hiphop 18 90.0% 1 5.0%
Jazz 7 77.8% 2 22.2%
Metal 1 12.5% 4 50.0%
Pop 12 92.3% 1 7.7%
Reggae 16 64.0% 4 16.0%
Rock 23 41.1% 4 7.1%

Total 122 63.5% 24 12.5%

Table 3. Majority vote agreement, by genre, with GTZAN and k-NN classifier. Agree-
ment is defined as in Table 1.

considerable variation in the way our participants classified the songs, with the

highest agreement with the new majority vote ground truth being 166 songs, or

86.46%. However, we also see from this table that overall there is more individual

agreement with this new majority vote ground truth than the original GTZAN

ground truth, so there seems to be a number of songs that everyone believes are

wrongly classified in the original ground truth.

As a more detailed analysis, Table 3 shows a comparison of the majority

vote for each genre to both the original ground truth and the results from our

k-NN classification. As the table shows, participants agree strongly with ground

truth for pop, hiphop, blues, country and jazz. Reggae and disco have moderate

agreement, while rock and specially metal have very low agreement.

4.2 Comparison with the “World Out There”

In order to compare the classification of ground truth, k-NN and our participants

to that of the world out there, we selected 15 songs randomly from the songs in

the dataset that we recognized. We then looked at how these songs are classified

on iTunes, allmusic.com and last.fm.

Apple’s on-line media store, iTunes, only classifies albums so songs actually

can have multiple genre classifications if they are featured on more than one

album. Two songs in our set, David Bowie’s “Space Oddity”, and Jethro Tull’s

“Life is a love song” fall into this category, where both are classified as pop in

one place, and rock in another place.

Allmusic.com is a music reference web page with album and artist critique.

Allmusic.com classifies artists into genres and styles, where genres are usually

very broad, such as “Pop-Rock” but styles are narrower. We report the genre

and the two top styles of each artist.

Last.fm is an Internet radio station that allows users to tag songs. Tags can

be any text that listeners use to describe songs. Most popular tags are displayed
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Artist GTZAN iTunes allmusic.com last.fm k-NN participants

Song genre / % genre / %

Ani Difranco rock alternative pop/rock folk country 24 pop 85
Cradle and all folk female.voc jazz 22 jazz 15

urban folk indie blues 18

Billy Joel rock rock pop/rock classic rock disco 35 pop 75
Movin’ out singer/songwr. pop rock 21 rock 25

soft rock soft rock country 20

Bob Seger rock rock pop/rock classic rock disco 24 pop 65
Against the wind rock’n’roll rock country 23 country 25

hard rock soft rock reggae 16 rock 10

David Bowie rock pop/rock pop/rock classic rock country 37 pop 75
Space Oddity hard rock glam rock disco 23 rock 20

glam rock british rock rock 19 reggae 5

Jethro Tull rock pop/rock progressive country disco 43 pop 85
Life is a love song blues-rock classic rock rock 16 rock 10

hard rock 70s country 15 blues 5

Led Zeppelin rock rock pop/rock classic rock pop 26 reggae 50
D’yer Mak’er blues rock disco 23 rock 35

blues-rock reggae rock 23 pop 15

Simply Red rock pop pop/rock pop disco 28 pop 55
Freedom soul rock rock 25 jazz 25

adult.cont. easy blues 21 disco 15

Sting rock rock pop/rock rock pop 31 jazz 50
Consider me gone adult cont. jazz hiphop 15 pop 45

cont. pop/rock pop reggae 14 blues 5

Jimmy Cliff reggae reggae reggae reggae classical 26 pop 70
Many rivers to cross reggae-pop soul jazz 23 classical 25

roots reggae jamaica country 22 reggae 5

Marcia Griffiths reggae reggae reggae funk pop 60 pop 65
It’s Electric dancehall dance disco 23 disco 30

roots reggae party hiphop 5 hiphop 5

Cher pop pop pop/rock pop disco 26 disco 60
Believe dance-pop dance pop 24 pop 35

adult. cont. 90s reggae 23 hiphop 5

Madonna pop pop pop/rock pop hiphop 32 pop 65
Music dance-pop dance pop 22 hiphop 25

adult.cont. electronic jazz 18 disco 15

Guns’n’Roses metal rock pop/rock rock rock 54 rock 75
Live and let die hard rock hard rock metal 38 metal 20

heavy metal cover disco 4 blues 5

Living Colour metal rock pop/rock rock hiphop 34 rock 60
Glamour Boys alt. metal funk rock metal 28 pop 40

alt. pop/rock 80s disco 22

Willie Nelson country country country country blues 38 country 40
Georgia on my mind trad.country classic country country 29 blues 30

progr. country folk classical 16 jazz 20

Beastie Boys hiphop hiphop/rap rap hip-hop metal 59 rock 70
Fight for your right pop/rock 80s hiphop 18 metal 25

alt. pop/rock rock rock 17 hiphop 5

Table 4. Comparison of ground truth, iTunes, allmusic.com and last.fm, k-NN classi-
fication and participants’ voting.

on the website. We report the three most popular tags, omitting all tags that

include artists or song names.
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Table 4 shows the comparison of the ground truth, k-NN classification, our

participants’ voting, iTunes, allmusic.com and last.fm. The table shows that

iTunes agrees with the ground truth of the dataset in most cases, or 12 for

out of the 15 songs, if we count the two songs that have both pop and rock

classification in iTunes. The allmusic.com genre label is very broad, and in 12

out of the 15 songs this genre label is pop/rock. This goes for songs classified

as pop, rock or metal by the ground truth. The table also shows that in 8 songs

the k-NN classification has the correct genre in 2

nd
place, and in 2 songs the

correct genre comes in 3

rd
place. From this small sample our participants only

agree with the ground truth for 2 songs which is quite far from their agreement

for the whole 192 songs. The participants have the correct genre in 2

nd
place in

6 songs, and in 3

rd
place in 3 songs.

4.3 Discussion of Particular Songs

We now discuss in order each of the 15 tracks from Table 4 in more detail, both

the song itself as well as the various classifications.

Ani Difranco’s “Cradle and all” has a very strong acoustic guitar presence

and this is without a doubt the reason why our k-NN program classifies the song

as country. Many country songs have this same sound character. We see folk

mentioned both at allmusic.com and last.fm, which also is a genre characterized

by the acoustic guitar, but our ground truth does not include this genre. iTunes

uses the alternative genre for this song, but this genre is very ill-defined. Our

participants classify the song as a pop song, with several of them commenting

that they would use folk, or acoustic pop, if either was available.

Billy Joel’s “Movin’ out” can hardly be classified as a disco song, although

it has the dry 70’s drum sound. Yet our k-NN classifier classifies it as disco, as

too many other rock songs, with rock coming in second. 75% of our participants

classify it as a pop song with the remaining votes going to rock. Both allmu-

sic.com and last.fm use terms such as soft rock, which we believe is a synonym

for pop in many people’s mind.

Bob Seger’s “Against the wind” is on all three websites considered a rock song.

However, our solution does not have rock in the top three places, whereas 2 of our

20 participants classified the song as a rock song. The song has several elements

of a classic country song including the acoustic guitar, the piano playing, and the

vocal harmonies. This is one of the rock songs which our k-NN classifier classifies

as a disco song, which is plainly wrong. We believe that if multiple genres were

to be used, then pop, rock and country should all be used.

David Bowie’s “Space Oddity” features the acoustic guitar very much, and

this is without a doubt the reason in gets classified as a country song by k-NN.

All websites use the rock genre, sometimes with specific sub-genres of rock for

this song, although iTunes classifies it as pop when it is a part of Bowie’s “Singles

collection” album. Most participants in our study classified the song as a pop

song, with rock coming in second. The reggae classification of one participant

must be a mistake, since there is not a single reggae element in the song. Just as

it is difficult to pinpoint the boundaries between rock and metal, it is also very

difficult to pinpoint exactly the difference between pop and rock.
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Jethro Tull’s catalog of songs is extremely diverse, so classifications on artists

level are not going to be very accurate. Allmusic.com classifications of blues rock

or hard rock hardly describe “Life is a love song” well. Last.fm tags of progressive,

classic rock and 70’s are more accurate, although less popular tags, such as folk

rock describe the song better, in our opinion. Our participants classified it as

pop, with rock coming in second, and one participant using the blues genre. The

song is very acoustic, with acoustic guitars, mandolins and a flute. As with some

other acoustic songs it gets a considerable number of votes from country songs

in k-NN classification.

Led Zeppelin is of course one of the greatest rock bands in history, so it does

not come as a surprise that “D’yer Mak’er” is classified as a rock song by ground

truth, iTunes, and two most popular last.fm tags, with allmusic.com using blues

and blues rock. Blues is indeed where the roots of Led Zeppelin lie. 50% of our

participants and a considerable number of last.fm users want to classify this song

as a reggae song, and it cannot denied that indeed it has much more reggae feel

than “Many rivers to cross”. At the same time it features some pop elements,

reflected for instance in its instrumentation.

Simply Red’s “Freedom” is classified as rock by ground truth. This time we

are not surprised with the disco classification of k-NN since the song has in our

opinion more disco elements than rock elements, including the guitar sound and

the prominent strings. The rhythm, although not the standard disco beat, also

resembles disco, with very prominent bongo drums and tambourines. A vast

majority of participants classify the song as a pop song, thereby agreeing with

iTunes and the most popular last.fm tag (where rock comes in second).

Sting’s “Consider me gone” is one of the songs he recorded with several fa-

mous jazz musicians. Our participants have almost the same number of votes

for jazz and pop for this song, with one person considering it a blues song. None

mentioned the rock genre used by the ground truth, iTunes, and last.fm. We no-

tice, however, that last.fm also has both pop and jazz tags, while allmusic.com

concentrates on the adult-contemporary label. This is one of these songs where

it is very difficult to say that one particular genre is correct.

Jimmy Cliff’s “Many rivers to cross” is yet another one of those difficult

songs. Websites and ground truth agree on defining the song as a reggae song,

but the song does not include any trademark reggae features, such as the off-

beat rhythm. Instead it has some classical characteristics, such as the prominent

church organ sound. Jimmy Cliff is one of those artists that has merged reggae

and pop music successfully, and as with Marcia Griffiths this song is perhaps

not very representative for him. Most of our participants classify this as a pop

song, with classical coming in second.

Marcia Griffiths’ “It’s electric” is an example of a song that perhaps does not

represent the artist very well, and therefore there is inconsistency between genres

that are created by artist or album classifications and genres that are created by

song classification. Both k-NN and our experiment participants classify this as

a pop song, with disco and hip-hop coming in 2

nd
and 3

rd
, respectively. Last.fm

tags include funk, dance and party which can be said to be closer to the pop,

disco, hip-hop, categories than reggae assigned by both iTunes and allmusic.com.

However, some of our participants commented that Marcia Griffiths is known as
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a reggae artist, but they still could not classify this particular song as a reggae

song.

Cher’s “Believe” features the infamous disco drum beat where the high-hat

opens on every offbeat. Most of the instruments are obviously programmed,

which makes the sound different from the classic 70’s disco songs. Participants

agree with k-NN in classifying this as a disco song, but both put pop in second

place with the difference in votes in the k-NN classification being very low.

Perhaps the style dance-pop used my allmusic.com describes it best, but what

is dance-pop other than a combination of disco and pop?

Madonna’s “Music” is a very electronic song. Most, if not all instruments are

electronic in nature and programmed instead of being “hand-played”. It has this

in common with most hiphop songs, in addition to some strange vocal effects.

However, in our opinion it lacks the hiphop beat to be classified as a hiphop

song. We see that our participants agree with ground truth, iTunes and last.fm

most popular tag, in classifying it as a pop song, and indeed pop is the genre

with the second most votes in k-NN. Allmusic.com uses dance-pop which also

describes the song very well.

Guns’n’Roses version of the Wings hit “Live and let die” is considered a metal

song by ground truth. iTunes, k-NN, participants and last.fm all agree on rock,

while the first style at allmusic.com is hard rock, with metal coming in second

for both k-NN and our participants. It is difficult to say where the boundaries

lie between rock and metal. This song does include a large dose of overdriven

guitars, which does characterize metal, but in our opinion the overall sound and

feel is much more rock.

Living Colour’s “Glamour Boys” is classified as hiphop by k-NN with metal

and disco in 2

nd
and 3

rd
place, respectively. Ground truth considers this a metal

song, while participants, iTunes and the most popular last.fm tag agree on rock.

Some participants commented that indeed the verse with its clean guitar sound

of the song is a pop verse, while the chorus with its overdriven guitar and more

aggressive voice is more rock oriented. This caused some of them to have prob-

lems deciding which genre to use. In the end it was 60/40 for rock against pop.

“Georgia on my mind” has been recorded by many artists. With Willie Nelson

being a country icon, iTunes, which classifies albums, and allmusic.com, which

classifies artists, use the country genre for his version of this song. The three

most popular tags at last.fm are country, traditional country and folk. The fourth

most popular tag (not counting the tag Willie Nelson) is blues. k-NN classifies

the song as blues with country coming in second place, while this is reversed

for our participants. The song, in our opinion, is more of a blues song than a

country song, but Willie Nelson does of course bring some country flavor to it.

Beastie Boys’ “Fight for your right” would probably never be classified as a

hiphop song by people that heard it the first time and did not know that Beastie

Boys are a hiphop/rap band. The instrumentation and rhythm are those of a

typical rock/metal song, with loud overdriven guitars, and simple bass and drum

beats. The vocals are the only thing that resemble rap music. k-NN strongly

classifies this as metal with hiphop and rock coming in 2

nd
and 3

rd
, while 70% of

our participants classify it as rock, and 25% as metal. One participant classified

it as hiphop.
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4.4 Impact of Ground Truth Definition on Classification Accuracy

Having seen that the participants in our ground truth experiment had in many

ways different opinions on which genre songs in the GTZAN dataset should

belong to, we decided to change the ground truth of the songs where the majority

vote of participants differs from the ground truth. Recall from Table 1 that the

majority vote results from the experiment agrees with the ground truth for 122

songs of the 192 that were incorrectly classified by the k-NN classifier, meaning

that we changed the ground truth of 70 songs. Table 1 shows us that out of

these 70 songs, the results of the user experiment agrees with the results from

our k-NN classification for 24 songs.

After re-running k-NN classification experiments with the updated ground

truth, to our surprise, the classification accuracy did not improve much: it went

from 80.8% to 81.5%, meaning only 7 more songs were correctly classified, despite

the ground truth for 24 songs being changed to exactly as the k-NN classifier

had previously classified them. Additionally, 86 tracks had the correct genre in

2

nd
place, for a total of 90.1% in 1

st
or 2

nd
place. This is an increase of only one

song compared with the unmodified ground truth.

The reason for this limited improvement is that in many cases the vote dif-

ference of the k-NN classifier between the genres in 1

st
and 2

nd
place is very low,

so several songs that were correctly classified when using the unmodified ground

truth definition changed to being incorrectly classified using the modified ground

truth definition. It is also worth pointing out that we only had the participants

of our experiment listen to the songs that were originally incorrectly classified.

If we were to actually change the ground truth in order to make each genre

more coherent we would need to perform a larger-scale study to investigate the

entirety of 1,000 songs.

5 Conclusion

We have seen through a number of experiments that the evaluation of the results

from automatic genre classification systems is not as simple as it might seem.

This confirms the findings of prior work which already took a critical view on

genre classification and genre ground truth. Just because the classification of

a given song does not agree with a given ground truth classification does not

necessarily mean it is wrong. Given the subjective nature of genre classification,

and how artists sometime merge two or multiple known genres, there are many

situations where two or more genres might be appropriate for a given song.

We have also seen that changing the ground truth increased our accuracy for 7

songs out of the 1,000. We conclude that in order to create a working automatic

genre classification system much more emphasis has to be put on the ground

truth creation and analysis, and evaluation of the results of such systems need

to be much more than simply calculating a percentage of how many of the top

genres agree with a given ground truth. We agree with [2] that one good way of

such evaluations could be to weight the results from such systems to reflect the

amount of human classification ambiguity of the same dataset.

Proc. of the 13th International Symposium on CMMR, Matosinhos, Portugal, Sept. 25-28, 2017

55



12 Pálmason et al.

Acknowledgements
Supported by the Austrian Science Fund (FWF): P25655 and the Austrian FFG:

BRIDGE 1 project SmarterJam (858514).

References

1. Aucouturier, J.J., Pachet, F.: Representing musical genre: A state of the art. Jour-
nal of New Music Research 32(1), 83–93 (2003)

2. Craft, A., Wiggins, G., Crawford, T.: How many beans make five? the consensus
problem in music-genre classification and a new evaluation method for single-genre
categorisation systems. In: Proceedings of the 8th International Symposium on
Music Information Retrieval (ISMIR). Vienna, Austria (September 2007)

3. Drott, E.: The End(s) of Genre. Journal of Music Theory 57(1), 1–45 (2013)
4. Gjerdingen, R.O., Perrott, D.: Scanning the dial: The rapid recognition of music

genres. Journal of New Music Research 37(2), 93–100 (2008)
5. Guðmundsson, G.Þ., Jónsson, B.Þ., Amsaleg, L.: A large-scale performance study

of cluster-based high-dimensional indexing. In: ACM Multimedia Workshop on
Very-Large-Scale Multimedia Corpus, Mining and Retrieval. Florence, Italy (2010)

6. Krumhansl, C.L.: Plink: “Thin Slices” of Music. Music Perception: An Interdisci-
plinary Journal 27(5), 337–354 (June 2010)

7. Lippens, S., Martens, J.P., De Mulder, T., Tzanetakis, G.: A comparison of human
and automatic musical genre classification. In: Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP) (2004)

8. McKay, C., Fujinaga, I.: Musical Genre Classification: Is It Worth Pursuing and
How Can It Be Improved? In: Proceedings of the 7th International Conference on
Music Information Retrieval (ISMIR). Victoria, BC, Canada (October 2006)

9. Novello, A., McKinney, M.F., Kohlrausch, A.: Perceptual Evaluation of Music Sim-
ilarity. In: Proceedings of the 7th International Conference on Music Information
Retrieval (ISMIR). Victoria, BC, Canada (October 2006)

10. Pachet, F., Cazaly, D.: A Taxonomy of Musical Genre. In: Proceedings of Content-
Based Multimedia Information Access (RIAO) Conference. Paris, France (2000)

11. Scaringella, N., Zoia, G., Mlynek, D.: Automatic Genre Classification of Music
Content: A Survey. IEEE Signal Processing Magazine 23(2), 133–141 (March 2006)

12. Schedl, M., Flexer, A., Urbano, J.: The neglected user in music information retrieval
research. Journal of Intelligent Information Systems 41, 523–539 (December 2013)

13. Seyerlehner, K., Widmer, G., Knees, P.: A Comparison of Human, Automatic and
Collaborative Music Genre Classification and User Centric Evaluation of Genre
Classification Systems. In: Detyniecki, M., Knees, P., Nürnberger, A., Schedl, M.,
Stober, S. (eds.) Adaptive Multimedia Retrieval: Context, Exploration, and Fusion,
LNCS, vol. 6817. Springer (2011)

14. Sturm, B.L.: An Analysis of the GTZAN Music Genre Dataset. In: Proceedings of
the 2nd International ACM Workshop on Music Information Retrieval with User-
centered and Multimodal Strategies (MIRUM). Nara, Japan (October–November
2012)

15. Sturm, B.L.: The State of the Art Ten Years After a State of the Art: Future
Research in Music Information Retrieval. Journal of New Music Research 43(2),
147–172 (2014)

16. Tzanetakis, G., Cook, P.: Musical Genre Classification of Audio Signals. IEEE
Transactions on Speech and Audio Processing 10(5), 293–302 (July 2002)

Proc. of the 13th International Symposium on CMMR, Matosinhos, Portugal, Sept. 25-28, 2017

56


