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ABSTRACT
In this tutorial, we give an introduction to the field of and
state of the art in music information retrieval (MIR). The
tutorial particularly spotlights the question of music sim-
ilarity, which is an essential aspect in music retrieval and
recommendation. Three factors play a central role in MIR
research: (1) the music content, i.e., the audio signal itself,
(2) the music context, i.e., metadata in the widest sense, and
(3) the listeners and their contexts, manifested in user-music
interaction traces. We review approaches that extract fea-
tures from all three data sources and combinations thereof
and show how these features can be used for (large-scale)
music indexing, music description, music similarity mea-
surement, and recommendation. These methods are further
showcased in a number of popular music applications, such
as automatic playlist generation and personalized radio sta-
tioning, location-aware music recommendation, music search
engines, and intelligent browsing interfaces. Additionally,
related topics such as music identification, automatic music
accompaniment and score following, and search and retrieval
in the music production domain are discussed.

Categories and Subject Descriptors
H.5.5 [Information Interfaces and Presentation]: Sound
and Music Computing—Methodologies and techniques; H.3.3
[Information Storage and Retrieval]: Information Search
and Retrieval
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1. INTRODUCTION
As the amount of music available via streaming services,

online stores, platforms like YouTube, and other web sources
has skyrocketed over the last couple of years. Retrieving rel-
evant music that matches the user’s taste is a challenging,
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Figure 1: Four different categories of factors that
influence music perception.

albeit important task to make accessible the ever-growing
digital music repositories in an intelligent manner. Given
the current rise of social media and user-generated contents,
retrieving information about music as well as retrieving mu-
sic itself heavily relies on text-based IR techniques, as text
is still the widest used means of communication on the web.
On the other hand, multimodal retrieval schemes for multi-
media content demand for acoustic features and make hybrid
(signal- and text-based) approaches attractive.

Music information retrieval (MIR) is a research field that
aims – among other things – at automatically extracting
semantically meaningful information from various represen-
tations of music entities, such as a digital audio file, a band’s
web page, a song’s lyrics, or a tweet about a microblogger’s
current listening activity.

A key approach in MIR is to describe music via computa-
tional features, which can be broadly categorized into music
content, music context, user properties, and user context, cf.
Figure 1. While music content-based features are derived di-
rectly from the audio signal of the music file, music context
refers to pieces of information that are not encoded in the
actual audio file, nevertheless play an important role in hu-
man perception of music. Such aspects include the meaning
of song lyrics, the background of an artist, the cover of an al-
bum, the sequence of songs selected by a DJ to constitute a
playlist, or collaborative tags describing a release. Extract-
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Figure 2: The different levels of feature abstraction
and the “semantic gap” between them.

ing music content features requires access to the actual audio
file; in contrast, contextual feature extractors require as in-
put only editorial metadata (e.g., name of artist and song)
to harvest music-related information from the web and con-
sequently approximate similarities between music items. On
the other hand, music content features are in general more
objective than music context features as the underlying data
source, i.e., the audio itself, does not change dynamically, in
contrast to user-generated content or other kinds of con-
textual data sources. Both types of features (content and
context), however, share a susceptibility to noise of different
kinds. User properties refer to the listener’s demographic
information, musical education and experience, preferences
and taste, as well as personality traits. The user context in-
cludes environmental aspects as well as physical and mental
activities of the music listener. Particularly aspects of the
latter two categories are often difficult to derive. Methods
aiming at modeling these dimensions thus typically exploit
traces of user-music interaction, such as listening histories
or geo-location data, in order to learn a representation of
(possibly latent) user state and context.

Depending on the chosen source, features might be closer
to a concept as humans understand it (high-level) or closer to
a strictly machine-interpretable representation (low-level).
For instance, features derived from the music content or the
sensor data captured with a user’s personal device will be
mostly statistical descriptions of signals that are difficult to
interpret, i.e., low-level features, whereas information ex-
tracted from web sources, such as occurrences of words in
web page texts, is typically easier to interpret. For all types
of features in order to be processable, we need a numeric ab-
straction. Between these low-level numeric representations
and the factors of musical perception that we want to model
there is a discrepancy – commonly known as “semantic gap,”
cf. Figure 2. Particularly, the hybrid and user-centric tech-
niques discussed strive to narrow this gap.

2. CONTENTS
MIR research has been seeing a paradigm shift over the

last couple of years, as an increasing number of recently pub-

lished approaches focus on the contextual feature categories,
or at least combine audio-based techniques with data mined
from web sources or the user’s signals. This is reflected in
the structure of the tutorial.

First, we introduce selected existing applications that rely
on MIR technology to motivate the presented contents and
relate them to real-world scenarios and applications, such
as automated music playlist generation, personalized web
radio, music recommendation systems, and intelligent user
interfaces to music. Then, we summarize the ideas behind
and discuss advantages and disadvantages of computational
features extracted from music content and music context, as
well as user-centric information. Each of these discussions
is substantiated in a dedicated segment.

Regarding music content analysis, we give a brief intro-
duction to signal processing methods (PCM, A/D Conver-
sion, FFT, DCT, etc.) to lay the foundation for elaborated
methods of music processing (e.g., [9]). We review some
standard approaches to audio feature extraction on frame
and block level as well as state-of-the-art similarity measures
using features such as MFCCs [17], block-level features[29],
and pitch class profiles [20]. We also briefly address features
for related MIR tasks such as beat detection [4], melody ex-
traction [21], or score following [1]. In addition, aspects of
large-scale indexing [27] and the problem of hubness for re-
trieval in high-dimensional feature spaces are addressed [28].
Further attention is given to evaluating MIR systems beyond
the traditional IR-related measures and the difficulties en-
tailed by the need for objective quantification, e.g., [5, 31].

As for aspects of the music context, we focus on data ac-
cessible through web technology. To this end, we introduce
the field of web-based MIR and give a detailed description
and comparison of contextual data sources on music (e.g.,
web pages and blogs [10], micro-blogs [23], user tags [16, 14],
and lyrics [18]) and discuss related methods to obtain this
data (web mining, games with a purpose [15], etc.). These
sources can be exploited in order to

• mine descriptive and relational metadata (e.g., band
members and instrumentation, country, album covers,
genres, related artists, e.g., [22, 12]), to

• construct similarity measures for music artists and songs
based on collaborative and cultural knowledge (e.g.,
[10, 32], and to

• automatically index and retrieve music [11, 2].

Regarding the user-centric aspects (user properties and
context) and their applications in music recommendation
and other personalized systems, we discuss sources of music
interaction traces (e.g., playlists [19], ratings [6], postings
and micro-blogs [24], peer-to-peer networks [13, 30], and
social networks [7]) and possibilities to mine the context
directly from sensor data using smart devices [8]. Meth-
ods that use this data can then be applied for tasks such
as playlist generation, tag prediction, and location-aware
music recommendation. We further address methods that
include information from both context data and content in-
formation, either by learning hybrid similarity measures or
by optimizing audio-based or hybrid similarity functions in
order to reflect preference of users [26]. Additionally, user
requirements such as need for novelty, diversity, or serendip-
ity are addressed [3, 33]. This last segment concludes with



an outlook to the next years of MIR and the biggest chal-
lenges the field is facing.

The following outlines the structure of the tutorial:

1. Introduction to Music Similarity and Retrieval

(a) The Information Retrieval Perspective

(b) Factors of Music Similarity

(c) Applications: Playlist Generation, User Interfaces,
etc.

2. Content-Based MIR

(a) Basic Methods of Audio Signal Processing

(b) Audio Feature Extraction for Similarity Measure-
ment

(c) Music Understanding and Semantic Description

(d) Evaluation of Music Similarity Algorithms

3. Contextual Music Similarity, Indexing, and Re-
trieval

(a) Contextual Music Meta-Data: Comparison and Sources

(b) Text-Based Features and Similarity Measures

(c) Text-Based Indexing and Retrieval

4. Collaborative Music Similarity and Recommen-
dation

(a) Listener-centered Data Sources: Traces of Music
Interaction

(b) Collaborative Music Similarity and Recommenda-
tion

(c) User-Awareness

(d) Multi-Modal Combination

5. Grand Challenges and Outlook
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