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ABSTRACT
In this paper we approach the issue of violence detection in
typical Hollywood productions. Given the high variability in
appearance of violent scenes in movies, training a classifier
to predict violent frames directly from visual or/and audi-
tory features seems rather difficult. Instead, we propose a
different perspective that relies on fusing mid-level concept
predictions that are inferred from low-level features. This
is achieved by employing a bank of multi-layer perceptron
classifiers featuring a dropout training scheme. Experimen-
tal validation conducted in the context of the Violent Scenes
Detection task of the MediaEval 2012 Multimedia Bench-
mark Evaluation show the potential of this approach that
ranked first among 34 other submissions in terms of preci-
sion and F1-score.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing; I.5.3 [Pattern Recognition]: Classification—vi-
olence detection.

General Terms
Algorithms, Measurement, Performance, Experimentation.

Keywords
violence detection, multimodal video description, multi-layer
perceptron, Hollywood movies.

1. INTRODUCTION
Video broadcasting footage (e.g., YouTube, Dailymotion)

is now the largest broadband traffic category on the Inter-
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net, comprising more than a quarter of total traffic (source
CISCO systems, http://www.cisco.com). In this context,
one of the emerging research areas is the automatic filter-
ing of video contents. The objective is to select appropriate
content for different user profiles or audiences. A particular
case is the filtering of affect content related to violence, for
instance for banning children from accessing it or for auto-
matic video content rating.

Defining the term “violence” is not an easy task, as this
notion remains subjective and thus dependent on people [1].
Definitions range from literal ones such as “actions or words
which are intended to hurt people”1 or “physical violence or
accident resulting in human injury or pain” [2] to more tech-
nical film-making related where this notion is defined by spe-
cific visual-auditory indicators, e.g., high-speed movements
or fast-paced music [3].

In this paper we address the problem of violence detection
in the context of typical Hollywood movies. Our approach
relies on fusing mid-level concept predictions made using
multi-layer perceptron classifiers. The final goal is to auto-
matically localize the occurrence of violence within a video.

The remainder of the article is organized as follows: Sec-
tion 2 presents a detailed overview of the current state-of-
the-art of the research in violent scene detection. Section
3 introduces the proposed approach, while Section 4 details
the classification scheme involved. Experimental validation
is presented in Section 5. Section 6 concludes the paper.

2. PREVIOUS WORK
Due to the complexity of the research problem, starting

with the formulation of the task (i.e., defining violence) to
the inference of highly semantic concepts out of low-level
information, the problem of violence detection in videos has
been marginally studied in the literature. Some of the most
representative approaches are reviewed in the sequel.

A related domain is the detection of affective content in
videos, which refers to the intensity (i.e., arousal) and type
(i.e., valence) of emotion that are expected to arise in the
user while watching a certain video [4]. Existing methods at-
tempt to map low-level features (e.g., low-level audio-visual

1Source: Cambridge dictionary,
http://dictionary.cambridge.org.



features, users’ physiological signals) to high-level emotions
[5]; or to mid-level features as in the approach in [6] that
studies the interrelationship of violent game events and the
underlying neurophysiologic basis (brain activity) of a player.
If we refer to violence as an expected emotion in videos,
affect-related features may be applicable to represent the
violence concept [7].

Another related domain is action recognition, which fo-
cuses on detecting human violence in real-world scenarios.
An example is the method in [8] that proposes an in-depth
hierarchical approach for detecting distinct violent events
involving two people, e.g., fist fighting, hitting with objects,
kicking. The information used consists of computing the
motion trajectory of image structures (acceleration measure
vector and its jerk). The framework is preliminarily vali-
dated on 15 short-time sequences including around 40 vio-
lent scenes. Another example is the approach in [9] that aims
to detect instances of aggressive human behavior in public
environments. The authors use a Dynamic Bayesian Net-
work (DBN) as a fusion mechanism to aggregate aggression
scene indicators, e.g., “scream”, “passing train” or “articula-
tion energy”. Evaluation is carried out using 13 clips featur-
ing various scenarios, such as“aggression toward a vends ma-
chine” or “supporters harassing a passenger”. The method
reports an accuracy score close to 80%.

The use of Bag-of-Visual-Words (BoVW) statistical mod-
els has also been exploited. For instance, [10] addresses
fight detection using BoVW along with Space-Time Interest
Points (STIP) and Motion Scale-Invariant Feature Trans-
form (MoSIFT) features. In addition, for the purpose of
evaluation and to foster research on violence detection, the
authors attempt to introduce a standard testing data set
consisting of 1,000 clips of action scenes from hockey games.
Ground truth is provided at frame level (as “fight” or “non-
fight” labeling). Highest reported detection accuracy is near
90%. A similar experiment is the one in [11] that uses
BoVW with local spatio-temporal features. Experimental
tests show that for this scenario motion patterns tend to
provide better performance than spatio-visual descriptors.
Tests are conducted on sports and surveillance videos.

A broader category of approaches focus on a more general
framework, such as detecting video shots/segments with vio-
lent content that may be considered disturbing for different
categories of viewers. These methods are typically address-
ing video TV broadcasting materials, such as Hollywood en-
tertainment movies. One of the early approaches in this di-
rection is the one in [12], where the violent events are located
using multiple audio-visual signatures, e.g., description of
motion activity, blood and flame detection, violence/non-
violence classification of the soundtrack and characteriza-
tion of sound effects. Only qualitative validation is reported.
Other examples include the following: [3] exploits shot length,
motion activity, loudness, speech, light, and music. Fea-
tures are combined using a modified semi-supervised learn-
ing scheme that uses Semi-Supervised Cross Feature Learn-
ing (SCFL). The method is preliminarily evaluated using 4
Hollywood movies, yielding a top F1-score of 85%; [13] com-
bines audio-visual features (e.g., shot length, speech, mu-
sic ratios, motion intensity) to select representative shots in
typical action movies with the objective of producing au-
tomatic video trailers. Content classification is performed
with Support Vector Machines (SVMs); [14] uses various
audio features (e.g., spectrogram, chroma, energy entropy,

Mel-Frequency Cepstral Coefficients (MFCC)) and visual
descriptors (e.g., average motion, motion orientation vari-
ance, measure of the motion of people or faces in the scene).
Modalities are combined by employing a meta-classification
architecture that classifies mid-term video segments as “vio-
lent” or “non-violent”. Experimental validation is performed
on 10 movies and highest F1-score is up to 58%; [15] proposes
a violent shot detector that uses a modified probabilistic La-
tent Semantic Analysis (pLSA) to detect violence from the
auditory content while the visual information is exploited
via motion, flame, explosion and blood analysis. Final in-
tegration is achieved using a co-training scheme (typically
used when dealing with small amounts of training data and
large amounts of unlabeled data). Experimental validation
is conducted on 5 movies showing an average F1-score of
88% (however there is no information on the ground truth
used). More recently, approaches also consider the benefits
of temporal integration of features and late fusion integra-
tion schemes, e.g., [16].

Although most of the approaches are multimodal, there
are some attempts to exploit the benefits of single modal-
ities, e.g., [18] uses Gaussian Mixture Models (GMM) and
Hidden Markov Models (HMM) for modeling audio events
over time series. For experimentation, authors model the
presence of gunplay and car racing scenes with audio events
such as “gunshot”, “explosion”, “engine”, “helicopter flying”,
“car braking”, and “cheers”. Validation is performed on a
very restrained data set (excerpts of 5 minutes extracted
from 5 movies) leading to average F1-scores of up to 90%;
[19] uses face, blood, and motion information to determine
whether an action scene has violent content or not. The
specificity of the approach is in addressing more semantics-
bearing scene structure of video rather than simple shots.

In general, most of the existing approaches focus more or
less on engineering content descriptors that may be able to
highlight the specificity of violent contents or on the detec-
tion of concepts associated with it. Unfortunately, there is a
lack of a unified evaluation framework. Almost all of the ex-
isting approaches are tested either on very limited data sets
(just a few excerpts), on “closed”data or on specific domains
(e.g., only sports). Another problem lies in the violence re-
lated ground truth that reflects different understandings of
the concept. It tends to vary dramatically from method to
method and to be adapted to each of the data set (proof is
the high disparity of reported results and also the very high
accuracy in some cases). This hinders reproducibility of the
results and renders impossible performance comparison.

In the context of movie violence - which is the subject of
this work - there is a sustained effort made by the commu-
nity of the Violent Scenes Detection task of the MediaEval
Multimedia Benchmark Evaluation [17] to constitute a refer-
ence evaluation framework for validating violence detection
methods. It proposes a standardized data set together with
a detailed annotation ground truth of several audio-visual
concepts related to violence [2] (see Section 5).

In this paper we propose a different perspective that ex-
ploits the use of mid-level concepts in a multiple neural net-
work fusing scheme. The proposed approach goes beyond
the current state-of-the-art along these dimensions:

• by addressing a highly complex scenario where violence is
considered to be any scene involving human injury or pain;

• thanks to the fusion of mid-level concept predictions, the
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Figure 1: Method diagram (semantic level increases from left to right).

method is feature-independent in the sense that it does not
require the design of adapted features;

• violence is predicted at frame level which facilitates de-
tection of arbitrary length segments, not only fixed length
(e.g., shots);

• evaluation is carried out on a standard data set [2] making
the results both relevant and reproducible.

3. PROPOSED APPROACH
Instead of focusing on engineering a best content descrip-

tion approach suitable for this task, as most of the existing
approaches do, we propose a novel perspective. Given the
high variability in appearance of violent scenes in movies
and the low amount of training data that is usually avail-
able, training a classifier to predict violent frames directly
from visual and auditory features seems rather ineffective.

We propose instead to use high-level concept ground-truth
obtained from manual annotation to infer mid-level concepts
as a stepping stone towards the final goal. Predicting mid-
level concepts from low-level features should be more feasi-
ble than directly predicting all forms of violence (highly se-
mantic). Also, predicting violence from mid-level concepts
should be easier than using directly the low-level content
features.

A diagram of the proposed method is shown in Figure 1.
First, we perform feature extraction. Features are extracted
at frame level (see Section 5.2). The resulting data is then
fed into a multi-classifier framework that operates in two
steps. The first step consists of training the system using
ground truth data. Once we captured data characteristics
we may classify unseen video frames into one of the two
categories: “violence” and “non-violence”. Consecutively, vi-
olence frames are aggregated to segments. Each of the two
steps is presented in the sequel.

3.1 Concept and violence training
To train the system we use ground truth data at two levels:

ground truth related to concepts that are usually present in
the violence scenes, such as presence of “fire”, presence of
“gunshots”, or “gory” scenes (more information is presented
in Section 5) and ground truth related to the actual violence
segments. We used the data set provided in [2].

The mid-level concept detection consists of a bank of clas-
sifiers that are trained to respond to each of the target
violence-related concepts. At this level, the response of
the classifier is optimized for best performance. Tests are
repeated for different parameter setups until the classifier
yields the highest accuracy. Each classifier state is then
saved. With this step, initial features are therefore trans-
formed into concept predictions (real valued between [0;1]).

The high-level concept detection is ensured by a final clas-
sifier that is fed with the previous concept predictions and
acts as a final fusion scheme. The output of the classifier
is thresholded to achieve the labeling of each frame as “vio-
lent” or “non-violent” (yes/no decision). As in the previous
case, we use the violence ground truth to tune the classifier
to its optimal results (e.g., setting the best threshold). The
classifier state is again conserved.

3.2 Violence classification
Equipped with a violence frame predictor, we may proceed

to label new unseen video sequences. Based on the previ-
ous classifier states, new frames are now labeled as “violent”
or “non-violent”. Depending on the final usage, aggrega-
tion into segments can be performed at two levels: arbitrary
length segments and video shot segments. The segment-level
tagging forms segments of consecutive frames our predictor
tagged as violent or non-violent and the shot-level tagging
uses preliminary shot boundary detection [20].

For both approaches, each segment (whether obtained at
the level of frames or shots) is assigned a violence score cor-
responding to the highest predictor output for any frame
within the segment. The segments are then tagged as “vi-
olent” or “non-violent” depending on whether their violence
score exceeds the optimal threshold found previously in the
training of the violence classifier.

4. NEURAL NETWORK CLASSIFIER
To choose the right classification scheme for this particular

fusion task, we conducted several preliminary experimental
tests using a broad variety of classifiers, from functional-
based (e.g., Support Vector Machines), decision trees to neu-
ral networks. Most of the classifiers failed in providing rele-
vant results when coping with high amount of input data,
i.e., labeling of individual frames rather than video segments
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Figure 2: Illustrating random dropouts of network units: 2a
shows the full classifier, 2b is one of the possible versions
trained on a single example.

(e.g., a movie has around 160,000 frames and the training
data consist of million frames). The inherent parallel archi-
tecture of neural networks fitted well these requirements, in
particular the use of multi-layer perceptrons. Therefore, for
the concept and violence classifiers (see Figure 1) we employ
a multi-layer perceptron with a single hidden layer of 512 lo-
gistic sigmoid units and as many output units as required for
the respective concept. Some of the concepts from [2] con-
sist of independent tags, for instance “fights” encompasses
the five tags “1vs1”, “default”, “distant attack”, “large” and
“small” (in which case we use five independent output units).

Networks are trained by gradient descent on the cross-
entropy error with backpropagation [26], using a recent idea
by Hinton et al. [25] to improve generalization: For each
presented training case, a fraction of input and hidden units
is omitted from the network and the remaining weights are
scaled up to compensate. Figure 2 visualizes this for a small
network, with 20% of input units and 50% of hidden units
“dropped out”. The set of dropped units is chosen at random
for each presentation of a training case, such that many dif-
ferent combinations of units will be trained during an epoch.

This helps generalization in the following way: By ran-
domly omitting units from the network, a higher-level unit
cannot rely on all lower-level units being present and thus
cannot adapt to very specific combinations of a few parent
units only. Instead, it is driven to find activation patterns of
a larger group of correlated units, such that dropping a frac-
tion of them does not hinder recognizing the pattern. For
example, when recognizing written digits, a network trained
without dropouts may find that three particular pixels are
enough to tell apart ones and sevens on the training data. A
network trained with input dropouts is forced to take into
account several correlated pixels per hidden unit and will
learn more robust features resembling strokes.

Hinton et al. [25] showed that features learned with drop-
outs generalize better, improving test set performance on
three very different machine learning tasks. This encouraged
us to try their idea for our data as well, and indeed we
observed an improvement of up to 5%-points F1-score in all
our experiments. As an additional benefit, a network trained
with dropouts does not severely overfit to the training data,
eliminating the need for early stopping on a validation set
to regularize training.

5. EXPERIMENTAL RESULTS
The experimental validation of our approach was carried

out in the context of the 2012 MediaEval Benchmarking

Initiative for Multimedia Evaluation, Affect task: Violent
Scenes Detection [17]. It proposes a corpus of 18 Hollywood
movies of different genres, from extremely violent movies to
movies without violence. Movies are divided into a devel-
opment set, consisting of 15 movies: “Armageddon”, “Billy
Elliot”, “Eragon”, “Harry Potter 5”, “I am Legend”, “Leon”,
“Midnight Express”, “Pirates of the Caribbean 1”, “Reser-
voir Dogs”, “Saving Private Ryan”, “The Sixth Sense”, “The
Wicker Man”, “Kill Bill 1”, “The Bourne Identity”, and“The
Wizard of Oz” (total duration of 27h 58min, 26,108 video
shots and violence duration ratio 9.39%); and a test set con-
sisting of 3 movies - “Dead Poets Society”, “Fight Club”, and
“Independence Day” (total duration 6h 44min, 6,570 video
shots and violence duration ratio 4.92%). Overall the entire
data set contains 1,819 violence segments [2].

Ground truth is provided at two levels. Frames are an-
notated according to 10 violence related high-level concepts,
namely: “presence of blood”,“fights”,“presence of fire”,“pres-
ence of guns”, “presence of cold weapons”, “car chases” and
“gory scenes”(for the video modality); “presence of screams”,
“gunshots” and “explosions” (for the audio modality) [1];
and frame segments are labeled as “violent” or “non-violent”.
Ground truth was created by 9 human assessors.

For evaluation, we use classic precision and recall:

precision =
TP

TP + FP
, recall =

TP

TP + FN
(1)

where TP stands for true positives (good detections), FP

are the false positives (false detections) and FN the false
negatives (the misdetections). To have a global measure of
performance, we also report F1-scores:

F1-score = 2 ·
precision · recall

precision+ recall
(2)

Values are averaged over all experiments.

5.1 Parameter tuning and preproceesing
The proposed approach involves the choice of several pa-

rameters and preprocessing steps.
In what concerns the multi-layer perceptron, we follow the

dropout scheme in [25, Sec.A.1] with minor modifications:
Weights are initialized to all zeroes, mini-batches are 900
samples, the learning rate starts at 1.0, momentum is in-
creased from 0.45 to 0.9 between epochs 10 and 20, and we
train for 100 epochs only. We use a single hidden layer of
512 units. These settings worked well in preliminary exper-
iments on 5 movies.

To avoid multiple scale values for the various content fea-
tures, the input data of the concept predictors is normal-
ized by subtracting the mean and dividing by the standard
deviation of each input dimension. Also, as the concept
predictors are highly likely to yield noisy outputs, we em-
ploy a sliding median filter for temporal smoothing of the
predictions. Trying a selection of filter lengths, we end up
smoothing over 125 frames, i.e. 5 seconds.

5.2 Video descriptors
We experimented with several video description approaches

that proved to perform well in various video and audio clas-
sification scenarios [17, 22, 23, 27]. Given the specificity
of the task, we derive audio, color, feature description and
temporal structure information. Descriptors are extracted
at frame level as follows:



• audio (196 dimensions): we use a general-purpose
set of audio descriptors: Linear Predictive Coefficients
(LPCs), Line Spectral Pairs (LSPs), MFCCs, Zero-
Crossing Rate (ZCR), and spectral centroid, flux, rolloff,
and kurtosis, augmented with the variance of each fea-
ture over a window of 0.8 s centered at the current
frame [24, 27];

• color (11 dimensions): to describe global color con-
tents, we use the Color Naming Histogram proposed
in [22]. It maps colors to 11 universal color names:
“black”,“blue”,“brown”,“grey”,“green”, “orange”,“pink”,
“purple”, “red”, “white”, and “yellow”;

• features (81 values): we use a 81-dimensional His-
togram of Oriented Gradients (HoG) [23].

• temporal structure (single dimension): to account
for temporal information we use a measure of visual
activity. We use the cut detector in [21] that measures
visual discontinuity by means of difference between
color histograms of consecutive frames. To account for
a broader range of significant visual changes, but still
rejecting small variations, we lower the threshold used
for cut detection. Then, for each frame we determine
the number of detections in a certain time window cen-
tered at the current frame (e.g., for violence detection
good performance is obtained with 2 s windows). High
values of this measure will account for important visual
changes that are typically related to action.

5.3 Cross-validation training results
In this experiment we aim to train and evaluate the perfor-

mance of the neural network classifiers according to concept
and violence ground truth. We used the development set of
15 movies. Training and evaluation are performed using a
leave-one-movie-out cross-validation approach.

5.3.1 Concept prediction
First, we train 10 multi-layer perceptrons to predict each

of the violence-related high-level concepts. The results of
the cross-validation are presented in Table 1. For each con-
cept, we list the input features (visual, auditory, or both)
and average precision, recall and F1-score at the binariza-
tion threshold giving the best F1-score (real valued outputs
of the perceptrons are thresholded to achieve yes/no deci-
sions).

Results show that the highest precision and recall are up
to 24% and 100%, respectively, while the highest F1-score is
of 26%. Detection of fire performs best, presumably because
it is always accompanied by prominent yellow tones captured
well by the visual features. The purely visual concepts (first
four rows) obtain high F1-score only because they are so
rare that setting a low threshold gives a high recall without
hurting precision. Manually inspecting some concept predic-
tions shows that fire and explosions are accurately detected,
screams and gunshots are mostly correct (although singing
is frequently mistaken for screaming, and accentuated fist
hits in fights are often mistaken for gunshots).

5.3.2 Violence prediction
Given the previous set of concept predictors of different

qualities, we proceed to train the frame-wise violence pre-
dictor. Using the concept ground truth as a substitute for

Table 1: Evaluation of concept predictions.

concept visual audio precision recall F1-score

blood X 7% 100% 12%
coldarms X 11% 100% 19%
firearms X 17% 45% 24%
gore X 5% 33% 9%
gunshots X 10% 14% 12%
screams X 8% 19% 12%
carchase X X 1% 8% 1%
explosions X X 8% 17% 11%
fights X X 14% 29% 19%
fire X X 24% 30% 26%

concept predictions will likely yield poor results - the system
would learn, for example, to associate blood with violence,
then provide inaccurate violence predictions on the test set
where we only have highly inaccurate blood predictions. In-
stead, we train on the real-valued concept predictor out-
puts obtained during the cross-validation described in Sec-
tion 5.3.1. This allows the system to learn which predictions
to trust and which to ignore.

The violence predictor achieves precision and recall values
of 28.29% and 37.64%, respectively and an F1-score of 32.3%
(results are obtained for the optimal binarization threshold).
The results are very promising considering the difficulty of
the task and the diversity of movies. The fact that we ob-
tain better performance compared to the detection of indi-
vidual concepts may be due to the fact that violent scenes
often involve the occurrence of several concepts, not only
one, which may compensate for some low concept detection
performance. A comparison with other techniques is pre-
sented in the following section.

5.4 MediaEval 2012 results
In the final experiment we present a comparison of the per-

formance of our violence predictor in the context of the 2012
MediaEval Benchmarking Initiative for Multimedia Evalua-
tion, Affect task: Violent Scenes Detection [2, 17].

In this task, participants were provided with the devel-
opment data set (15 movies) for training their approaches
while the official evaluation was carried out on 3 test movies:
“Dead Poets Society” (34 violent scenes), “Fight Club” (310
violent scenes) and“Independence Day”(371 violence scenes)
- a total of 715 violence scenes (ground truth for the test
set was released after the competition). A total number
of 8 teams participated providing 36 runs. Evaluation was
conducted both at video shot and segment level (arbitrary
length). The results are discussed in the sequel.

5.4.1 Shot-level results
In this experiment, video shots (shot segmentation was

provided by organizers [2, 1]) are tagged as being “violent”
or “non-violent”. Frame-to-shot aggregation is carried out
as presented in Section 3.2. Performance assessment is con-
ducted on a per-shot basis. To highlight the contribution
of the concepts, our approach is assessed with different fea-
ture combinations (see Table 3). A summary of the best
team runs is presented in Table 2 (results are presented in
decreasing order of F1-score values).

The use of mid-level concept predictions and multi-layer
perceptron (see ARF-(c)) ranked first and achieved the high-



Table 2: Violence shot-level detection results at MediaEval 2012 [2][17].

team descriptors modality method precision recall F1-score

ARF-(c) concepts audio-visual proposed 46.14% 54.40% 49.94%

ARF-(a) audio audio proposed 46.97% 45.59% 46.27%

ARF-(av)
audio, color, HoG, tem-
poral

audio-visual proposed 32.81% 67.69% 44.58%

ShanghaiHongkong [30]
trajectory, SIFT, STIP,
MFCC

audio-visual
temp. smoothing +
SVM with χ2 kernel

41.43% 46.29% 43.73%

ARF-(avc) [34]
audio, color, HoG, tem-
poral & concepts

audio-visual proposed 31.24% 66.15% 42.44%

TEC [33]
TF-IDF B-o-AW [16],
audio, color

audio-visual
fusion SVM with HIK
and χ2 kernel & Bayes
Net. & Naive Bayes

31.46% 55.52% 40.16%

TUM [29] energy & spectral audio audio SVM linear kernel 40.39% 32.00% 35.73%

ARF-(v) color, HoG, temporal visual proposed 25.04% 61.95% 35.67%

LIG [31]
color, texture, SIFT, B-
o-AW of MFCC

audio-visual
hierarch. fusion of
SVMs & k-NNs with
conceptual feedback

26.31% 42.09% 32.38%

TUB [7]
audio, B-o-AW MFCC,
motion

audio-visual SVM with RBF kernel 19.00% 62.65% 29.71%

DYNI [32] MS-LBP texture [35] visual SVM with linear kernel 15.55% 63.07% 24.95%

NII [28]
concept learned from
texture & color

visual SVM with RBF kernel 11.40% 89.93% 20.24%

Notations: SIFT - Scale Invariant Features Transform, STIP - Spatial-Temporal Interest Points, MFCC - Mel-Frequency Cepstral
Coefficients, SVM - Support Vector Machines, TF-IDF - Term Frequency-Inverse Document Frequency, B-o-AW - Bag-of-Audio-
Words, HIK - Histogram Intersection Kernel, k-NN - k Nearest Neighbors, RBF - Radial Basis Function, MS-LBP - Multi-Scale
Local Binary Pattern.

Table 3: Feature combinations.

run description

ARF-(c) use of only mid-level concept predictions;

ARF-(a)
use of only audio descriptors (the violence clas-
sifier is trained directly on the audio features);

ARF-(v) use of only visual features;
ARF-(ac) use of only audio-visual features;

ARF-(avc)
use of all concept and audio-visual features (the
violence classifier is trained using the fusion of
concept predictions and features).

est F1-score of 49.94%, that is an improvement of more than
6 percentage points over the other teams’ best runs, i.e.,
team ShanghaiHongkong [30], F1-score of 43.73%. For our
approach, the lowest discriminative power is provided by
using only the visual descriptors (see ARF-(v)), where the
F1-score is only 35.65%. Compared to visual features, audio
features seem to show better descriptive power, providing
the second best F1-score of 46.27%. The combination of de-
scriptors (early fusion) tends to reduce their efficiency and
yields lower performance than the use of concepts alone, e.g.,
audio-visual (see ARF-(av)) yields an F1-score of 44.58%,
while audio-visual-concepts (see ARF-(avc)) 42.44%.

Another observation is that, despite the use of general
purpose descriptors (see Section 5.2), the representation of
feature information via mid-level concepts allows better per-
formance than other, more elaborate content description ap-
proaches or classification, such as the use of SIFTs, B-o-AW
of MFCC or motion information.

Figure 3 details the precision-recall curves for our ap-
proach. One may observe that the use of concepts alone
(red line) provides significantly higher recall than the sole
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Figure 3: Precision-recall curves for the proposed approach.

use of audio-visual features or the combination off all for a
precision of 25% and above.

5.4.2 Arbitrary segment-level results
The final experiment is conducted at segment level. Video

segments of arbitrary length are tagged as “violent” or “non-
violent”. Frame-to-segment integration is carried out as pre-
sented in Section 3.2. The performance assessment in this
case is conducted on a per-unit-of-time basis.

Using the mid-level concepts, we achieve average precision
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Figure 4: Examples of violent segment detection in movie “Independence Day” (the oX axis is the time axis, the values on
oY axis are arbitrary, ground truth is depicted in red while the detected segments in blue).

and recall values of 42.21% and 40.38%, respectively, while
the F1-score amounts to 41.27%. This yields a miss rate
(at time level) of 50.69% and a very low false alarm rate of
only 6%. These results are also very promising considering
the difficulty of detecting precisely the exact time interval
of violent scenes, but also the subjectivity of the human
assessment (reflected in the ground truth). Comparison with
other approaches was not possible in this case as all other
teams provided only shot-level detection.

5.4.3 Violence detection examples
Figure 4 illustrates an example of violent segments de-

tected by our approach in the movie “Independence Day”.
For visualization purposes, some of the segments are de-
picted with a small vignette of a representative frame.

In general, the method performed very well on the movie
segments related to action (e.g., involving explosions, fire-
arms, fire, screams) and tends to be less efficient for seg-
ments where violence is encoded in the meaning of human
actions (e.g., fist fights or car chases). Examples of false
detections are due to visual effects that share similar audio-
visual signatures with the violence-related concepts. Com-
mon examples include accentuated fist hits, loud sounds or
the presence of fire not related to violence (e.g., see the
rocket launch or the fighter flight formation in Figure 4, first
two images). Misdetection is in general caused by limited
accuracy of the concept predictors (see last image in Figure
4, where some local explosions filmed from a distance have
been missed).

6. CONCLUSIONS
We presented a naive approach to the issue of violence

detection in Hollywood movies. Instead of using concept de-
scriptors to learn directly how to predict violence, as most
of the existing approaches do, the proposed approach re-
lies on an intermediate step consisting of predicting mid-
level violence concepts. Predicting mid-level concepts from
low-level features seems to be more feasible than directly
predicting all forms of violence. Predicting violence from
mid-level concepts proves to be much easier than using di-
rectly the low-level content features. Content classification
is performed with a multi-layer perceptron whose parallel
architecture fits well the target of labeling individual video
frames. The approach is naive in the sense of its simplic-
ity. Nevertheless, its efficiency in predicting arbitrary length
violence segments is remarkable. The proposed approach
ranked first in the context of the 2012 Affect Task: Vio-

lent Scenes Detection at MediaEval Multimedia Benchmark
(out of 36 total submissions). However, the main limitation
of the method is its dependence on a detailed annotation of
violent concepts, inheriting at some level its human subjec-
tivity. Future improvements will include exploring the use of
other information sources, such as text (e.g., subtitles that
are usually provided with movie DVDs).
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@ MediaEval 2012: An Uninformed Approach to
Violence Detection in Hollywood Movies”, Working
Notes Proc. of the MediaEval 2012 Workshop [17],
http://ceur-ws.org/Vol-927/mediaeval2012_

submission_36.pdf.

[35] S. Paris, H. Glotin, “Pyramidal Multi-level Features
for the Robot Vision @ICPR 2010 Challenge”, 20th Int.
Conf. on Pattern Recognition, pp. 2949 - 2952, Marseille,
France, 2010.


