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Abstract
In the recent years, a number of publications have ap-

peared that deal with automatically calculating the similar-
ity of music tracks. Most of them are based on features
that are not intuitively understandable to humans, as they do
not have a musically meaningful counterpart, but are merely
measures of basic physical properties of the audio signal.
Furthermore, most of these algorithms do not take into ac-
count the temporal development of the audio signal, which
certainly is an important aspect of music. All of them con-
sider the musical signal as a whole, not trying to reconstruct
the listening process of dividing the signal into a number of
sources.

In this work, we present a novel approach to fill this gap
by combining a number of existing ideas. At the heart of
our approach, Independent Component Analysis (ICA) de-
composes an audio signal into individual parts that appear
maximally independent from each other. We present one
basic algorithm to use these components for similarity com-
putations, and evaluate a number of modifications to it with
respect to genre classification accuracy. Our results indicate
that this approach is at least of similar quality as many ex-
isting feature extraction routines.

Keywords: audio feature extraction, music similarity com-
putation

1. Introduction
Although “music similarity” is an ill-defined concept, most
people have an intuitive idea of which music is similar, and
which is not. For example, most people would consider two
heavy metal pieces as being more similar to each other than
to a classical choir piece. It is obvious that such common-
sense judgements are somehow reflected in the musical sig-
nal. In recent years, some research has been performed to
extract these aspects algorithmically, and to automatically
compute the music similarity. Reviews of a number of these
approaches can be found in [1, 2]. Among the algorithms
that seem to perform best are those that are based on the
well-known Mel Frequency Cepstral Coefficients (MFCCS)
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which were invented for speech recognition [3, 4, 5, 6].
MFCCs only describe the coarse shape of the spectrum, and
discard the harmonic structure. Also, in these algorithms
the temporal structure is discarded. Approaches to model
the development of MFCCs in time have not significantly
improved the performance (cf. [7]). Most of the other al-
gorithms that aim to describe certain aspects (“features”)of
the audio signal (cf. also [8]) also only operate on very short
segments of the audio signal (“frames”) and do not consider
their temporal order.

There are only few audio features that take into account
the temporal structure of the signal, which certainly is of
great importance when regarding music (e.g. beat
histograms [9], meter and tempo descriptors [10], and fluc-
tuation patterns [11, 12]).

One thing that is common to these audio similarity algo-
rithms is that they are based on features that only look at
the mixed audio signal as a whole, although splitting the au-
dio signal into a number of subbands gives some separation
as usually in each band only few instruments are dominant.
One approach that has not been tried yet is to simulate the
hearing process to a certain extent, and separate the audio
signal into various sources before doing a similarity analy-
sis. The purpose of this paper is to take a first step into this
direction.

2. State of the Art
In this section, we describe the basic technique we use, Inde-
pendent Component Analysis (ICA), and give an overview
of how it has already been applied to the field of music in-
formation retrieval. Also, we motivate why we think ICA is
useful for the purpose of this work.

2.1. Independent Component Analysis (ICA)
Independent Component Analysis (ICA) is an approach to
solve the following problem: given a number of observed
signals that are a linear mixture of a number of unknown
signals, find these unknown signalsand the amount each
of them contributes to the observed signals. An example
for this scenario is two people speaking simultaneously in a
room, which is recorded with two microphones.

2.2. ICA in the field of Acoustics and Music Information
Retrieval
In [13], the authors apply ICA to short frames of time-
domain audio signals, so that each time-domain frame can



be represented by a mixture of independent components.
This work was motivated by prior work in image analysis
that found independent components to be related to low-
level aspects of human vision. The authors find some indica-
tion that for certain kinds of audio signals, the resulting in-
dependent components may be similar to low-level process-
ing steps in the human auditory system.

In [14], ICA was applied to separate the sources of musi-
cal signals, including various drum sounds and vocals. The
step of isolating vocals from the other instruments in a song
was improved and automated in [15]. The promising re-
sults from these works indicate that ICA might be useful
to separate the various musical instruments similar to hu-
man perception. Thus, ICA seems to be valuable for our
experiments presented here. For the field of pitch detection,
methods related to ICA were used in [16].

3. Approach
The starting point of our experiments is the combination of
a number of existing ideas. We adapt the basic approach for
image similarity computation by independent components
from [17] to the domain of audio processing. The approach
and its adaptation is described in the following sections.

3.1. Original Approach from [17]
For convenience and a better understanding, here first the
outline of the original approach is repeated.

3.1.1. Features and Feature Extraction

In the original work [17], feature extraction is done in the
following way: after a preprocessing step, a number of ran-
domly chosen excerpts of12×12 pixels are taken from each
image. The authors call these excerptspatches[18]. ICA is
run on a great number of patches. Each individual patch can
be thought of as a linear combination of independent com-
ponents. To describe a whole image, this image is divided
into patches, and each patch is described by the degree of
activation of each independent component. The features for
the whole image are the activation histograms for each inde-
pendent component over all patches from the image. Only
those histograms are retained whose average activation per
picture has the highest variance over a large number of pic-
tures. Two images are compared by comparing their (inde-
pendent components’ activation) histograms, as describedin
the next section.

3.1.2. Determining the Similarity Between Images

As the activations of the independent components are sparse
and highly uncorrelated, interdependencies between the var-
ious activation histograms of the independent components
can be disregarded. Thus, the comparison of two images
reduces to a comparison of the histograms belonging to the
same component. The individual similarities then can be
combined to obtain one overall similarity value. The authors
propose a number of approaches to compare the histograms.

Figure 1. Example of activation histograms for a choir piece
and a piece for prepared piano. The two independent compo-
nents whose histograms are shown are given in the left column.
It can be seen that the upper component is more often close to
zero in the choir piece than in the piano piece, while the com-
ponent depicted below is more frequently activated in the in
the choir piece than in the piano piece.

• The simplest is to take the mean of all activations of
a component over all patches of the image. Thus,
the feature data of an image consists of one vector of
lengthn, wheren is the number of independent com-
ponents. The similarity of two images is determined
by the Eucledian distance between these vectors.

• A better description of the histogram shapes is
achieved by modelling them as a Gaussian distribu-
tion, which results in two values per histogram (mean
and variance). These values are compared by apply-
ing the KL Distance. As the activation histograms
of the independent components are known to have a
high kurtosis, the authors also introduce an additional
flavour of this Gauss model: the activation histogram
is mirrored atx = 0, and the Gauss model is calcu-
lated over the resulting distribution. Obviously, in this
case the mean is zero.

• The most exact comparison between histograms was
done by modelling each histogram with a B spline,
and calculating the common area under the spline
models.

The similarity measure was evaluated on a set of540 im-
ages from four categories. Lacking a reliable pairwise sim-
ilarity judgement, evaluation of the similarity measure was
done by nearest neighbour classification, and the classifi-
cation accuracy was taken as an indicator of the similarity
measure’s quality. The authors report classification accura-
cies of up to87 percent.

3.2. Adoption to Musical Signals
When adopting this approach to music signals, the crucial
step is to find an analogue for the image patches (i.e. the
12×12 pixel samples from the images), including a suitable



data representation for their extraction. Some authors have
chosen a single time domain or frequency domain frame as
one “patch”. Although we also investigate this definition of
a patch in the course of our experiments, we found it more
interesting to also take into account the temporal changes of
the signal, because the development in time is an important
aspect of music, and furthermore already a great number
of audio descriptors exist that operate on a per-frame basis.
Thus, in our initial experimental setup, we opted to regard
a number ofN consecutive (frequency-domain) frames as
one patch, with the exact value ofN being one parameter in
our experiments. Each patch covers all frequencies.In [19],
this definition of a “patch” was already proposed. Also, it
is mentioned there that the great number of frequency bins
in a usual spectrum produces problems, as it causes the in-
put vector to the ICA algorithm to be very large (ie. num-
ber of frequency bins× number of frames in patch). Be-
cause of this, and due to the more perceptually motivated
representation, we transformed the spectrum to a mel-sone-
representation, which has only18 frequency bands instead
of e.g. 256. These18 frequency bands roughly correspond
to critical bands in the human auditory system.

3.3. Filters as templates for event detection

Of course it would be desirable to obtain independent com-
ponents (“filters”) that represent meaningful aspects of hear-
ing. Examples of such dedicated filters include “percus-
sive sound”, “high-frequency noise”, “sustained sound in
the lower frequencies”. Such filters then might serve as
templates to scan a given piece of music for these kinds
of events. The only publication we are aware of that uses
a template-based process for music analysis in the acoustic
domain is [20], where it was used for drum sound detection.

4. Experimental Setup

We carried out our experiments with the tracks from the
ISMIR’04 Genre Classification Contest training set. This
set consists of 724 tracks1 from the six genres classical
(43.7%), electronic (15.9%), jazz/blues (3.6%), metal/punk
(6.0%), rock/pop (14.0%), world (16.9%). 2 Feature ex-
traction was done on30 seconds from the middle of each
file. The overall algorithm was as described above: after
transforming each track into the mel/sone representation us-
ing the MA Toolbox [11], we calculated the independent
components on a subset of the collection. In the next step,
the components were used to extract the features from each
song by determining how strong each component is acti-
vated during the song. The final similarity computation de-
pends on the particular histogram comparison method.

1 We left out five tracks due to file naming inconsistencies.
2 The full set is available for download at

http://ismir2004.ismir.net/genrecontest/index.htm.

4.1. Obtaining the Independent Components

We used the FastICA3 algorithm to compute the indepen-
dent components. The data on which we computed ICA
were small fragments from the mel/sone representation of
the audio tracks. We started the evaluation with three differ-
ent fragment lengths:0.15 sec,0.3 sec, and0.6 sec. Note
that0.6 sec is the duration of one quarter note when play-
ing a 4/4th metre at 100 bpm, and similarly0.3 sec and
0.15 sec correspond to the durations of1/8 and1/16 note.
Based on the outcome of the experiments, we then also tried
other lengths. As the resulting patches contained up to576

values, calculating ICA on them also produced up to576

components. To reduce this large number of components,
we also applied a dimensionality reduction of the input data
by PCA before calculating ICA (the PCA compression is
then inverted on the – fewer – individual components after-
wards to expand them again to e.g.576 values per compo-
nent). This way, we reduced the number of components by
0% (i.e. no PCA),50% and75%. We evaluated three ways
to obtain ICA components:

1. As a first approach, we created a representative subset
of 100 songs from our collection. On these100 songs,
we calculated ICA on randomly chosen fragments. In
Figure 2, an example of the resulting components is
given.

2. The second approach was like the first approach, with
the difference that the patches were not extracted at
fully randomly chosen points, but rather starting on
those frames that are likely to contain beat onsets.

3. Finally, as an interesting try, we defined the compo-
nents manually, according to what we subjectively
thought to be meaningful entities such as high / mid
/ low frequency content, beat onsets in various fre-
quencies, periodicities at various levels. An example
of these component is given in Figure 3.

The quality of these approaches was evaluated as de-
scribed in the next section.

4.2. Evaluation

Lacking human judgements about the similarity of each pair
of tracks in the collection, we evaluated the algorithm’s per-
formance in a similar manner as in the original paper. We
assume that tracks that belong to the same genre are more
similar to each other than tracks that are labelled to belong
to different genres. After calculating the similarity of each
pair of tracks, we do a leave-one-out 1-Nearest-Neighbour
classification, and take the classification accuracy as an indi-
cator of the algorithm’s capability to calculate the perceived
similarity of music tracks.

3 http://www.cis.hut.fi/projects/ica/fastica/



Mel/Sone Patch Length 0.075 sec 0.15 sec 0.3 sec
PCA compression 1 0.5 0.25 1 0.5 0.25 1 0.5 0.25

Mean 63.8% 62.4% 61.8% 64.2% 63.5% 61.7% 64.2% 62.8% 61.5%

KL 68.5% 66.7% 65.7% 67.4% 68.2% 65.4% 64.5% 64.7% 65.6%

KL zero 67.4% 66.0% 65.7% 67.2% 66.3% 65.4% 63.6% 64.9% 64.3%

Table 1. A patch defined as a short excerpt of the mel/sone representation of the song.Average classification accuracy for a number of
patch sizes, for various histogram comparison methods and with varying PCA compression factor. Histogram comparison methods
were the Euclidean distance between the means of each histogram (Mean), Kullback-Leiber (KL) divergence based on mean and
standard deviation of the histograms (KL), and KL divergence based on the standard deviation of the histograms, mirrored at the
zero-point, which produces a mean of zero (KL zero). The overall maximum accuracy found with this setup was68.5% at a patch
length of 0.075 sec, below which patch length all accuracies tended to decrease.

Figure 2. Independent components calculated on patches of
length 0.15 sec with randomly chosen starting times, and50%
PCA compression.

5. Results and Discussion
In this section, we give the results of the experiments de-
scribed above, and give a short interpretation of these re-
sults.

5.1. ICs calculated on randomly chosen patches

When calculating the independent components on patches
that are randomly chosen, in many cases the components
seem not to correspond to meaningful acoustical entities.
But in some configurations interesting results appeared. For
example, in Figure 2 the components for patches of length
0.15 sec with50% PCA compression are given. It can be
seen that some components are primarily located in time,
which can be assumed to be activated on percussive mu-
sic events. Other components are mainly located in fre-
quency, with a horizontal shape. Components with a hori-
zontal shape might be preferably activated on sustained
sounds. We examined the calculated components for such
properties by investigating tracks for which components are
activated most frequently, and by visualizing the activation
of the components over time. Unfortunately, we found no
strong indication that these components are related to mean-

ingful musical entities in such a way. But at least compar-
ing certain activation histograms of clearly different pieces
give a weak indication that there might be such relationships
(cf. Figure 1).

The classification accuracies for1NN leave-one-out eval-
uation are given in Table 1. The values shown are the re-
sult of considering all available components. The accura-
cies are constantly above60%, with a maximum value of
68.5%. Although this value is still below the classification
accuracy achieved with the algorithm and proposed para-
meter set from [5], which is at72%, it is still above the
values we achieved with other audio descriptors for simple
nearest-neighbor classification [1], and within the range of
the accuracies achieved with sophisticated machine learning
algorithms applied on a set of many commonly used audio
features [1].

Following the practice in [17], we also tried to apply a
Hamming window to each patch before calculating the inde-
pendent components or determining the activation strength
of each component, respectively. This additional step did
not lead to increased classification accuracy in our experi-
ments.

Another observation we made was that only considering
thosen components whose average activation per song had
the highest variance over a large number of songs produced
lower accuracies than consideringall components. For this,
we triedn = {1, 2, 5, 10, 15, 20}. However, it should be
noted that forn = 20, the achieved classification accuracy
was only a few percentage points below the results obtained
when using all components.

5.1.1. Patches Defined as One Frame

As the highest results were achieved with patches of short
length (≤ 8 Frames), we also investigated the aforemen-
tioned alternative way to define patches to use only one sin-
gle frame, but with a higher frequency resolution. Except
for the differences in the frequency representation, the pa-
rameters of the experiment stayed the same. The results for
numFreq = 129 which are given in Table 2 indicate that
this alternative way to define patches does not contribute to
a higher classification accuracy.



1 0.5 0.25 0.125 0.0625

Mean 50.0% 53.3% 53.5% 50.5% 49.1%

KL 58.4% 57.8% 62.8% 58.8% 55.2%

KL zero 58.1% 58.4% 61.1% 59.6% 51.7%

Table 2. A patch defined as one FFT frame with 129 frequen-
cies: Average classification accuracy for the various methods
with varying PCA compression factor. Same abbreviations as
in Table 1.

5.2. Patches at Likely Onsets

Instead of trying to model each possible patch with arbitrary
start position by independent components, it might be bene-
ficial to only consider patches that start at onset times. This
might contribute to making various patches better compara-
ble to each other, as in this case it is known that each patch
starts at an onset. We evaluated this by finding possible on-
set times with a simple onset-detection algorithm. This al-
gorithm was applied to select the patches for calculating the
independent components, and also during feature extraction
for each particular song.

0.075 s 0.15 s 0.3 s 0.6 s
Mean 63.2% 62.5% 62.2% 54.8%

KL 65.8% 65.1% 63.1% 56.8%

KL zero 66.4% 62.9% 56.8% 48.0%

Table 3. Components extracted at likely onset positions:Average
classification accuracy for the various methods with varying
component length. Same abbreviations as in Table 1.

As can be seen in Table 3, this approach did not improve
the classification accuracies. Alternative reasons for thefail-
ure might be that the chosen onset detection algorithm might
not be the best for our purpose, or that too few patches are
extracted from each song, resulting in ill-defined activation
histograms. The latter point in particular might be a reason
for the low accuracies for patches of length0.6 sec.

5.3. Self-defined Components

As described in Section 5.1, the independent components
computed in this experiment are not clearly related to in-
tuitively understandable musical properties. We were also
interested in finding out if it is beneficial to intentionallyde-
fine the components so that they might describe such prop-
erties. Therefore, we created a number of components our-
selves (cf. Fig. 3). These components included averaging
filters for three frequency regions, high-pass like elements
in four frequency bands, components aimed to detect sus-
tained sounds at the individual frequencies, and components
that should be triggered by the presence of certain periodic
events at various frequencies. The latter resemble the fluc-
tuation patterns [11].

With the self-defined components, the independent ac-
tivation of the components can not be assumed any more.

Figure 3. Example for self-defined components.

Thus, we expand the KL distance measure between the his-
tograms to also take into account the covariance between the
activations of different components during each song. Con-
sequently, for this comparison method the feature data for
a song consists of the mean value and the full covariance
matrix. This additional comparison method is denoted as
KL full in Table 4.

0.075 s 0.15 s 0.3 s 0.6 s
Mean 59.6% 58.1% 57.0% 55.7%

KL 64.0% 62.0% 61.0% 58.5%

KL zero 64.4% 63.3% 61.0% 59.5%

KL full 67.6% 68.7% 68.2% 67.0%

Table 4. Self-defined Components:Average classification accu-
racy for the various methods with varying component length.
Same abbreviations as in Table 1, with the additional method
using the full covariance matrix (KL full ). Intentionally reduc-
ing the number of components did not lead to increased accu-
racies.

From Table 4 it can be seen thatKL full produces the
highest classification accuracies for the self-defined compo-
nents. These accuracies are also slightly higher than those
achieved with the other approaches we evaluated in this pa-
per. However, we still were not able to find that the activa-
tions correspond to musical aspects as perceived by human
listeners. Also, a linear combination of the distances pro-
duced by these algorithms with the distances produced by
a MFCC-based algorithm (which produces an accuracy of
72% on this data) did not yield a relevant improvement.

6. Conclusion and Future Work
We evaluated a number of ways to apply what we consider
an interesting approach to music similarity computation. The
approach is based on Independent Component Analysis
(ICA) and was originally developed as an image similarity



measure. We chose the classification accuracy as a quality
measure, which yields promising results. However, we also
had hoped to extract musically meaningful information from
the audio data with this approach; we have not succeeded in
this so far.

Possible improvements of the algorithm include the use
of other sparse coding techniques (e.g. Non-negative Matrix
Factorization) instead of ICA, and the use of B-splines for
histogram comparison. Using B-splines would not be fea-
sible for self-defined components, as no interdependencies
between the components can be modelled with this. Also it
might be possible to model the temporal order of component
activations, e.g. via Hidden Markov Models (HMMs).
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