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ABSTRACT

This paper addresses the issue of automatically organizing
a possibly large music collection for intuitive access. We
present an approach to cluster tracks in a hierarchical man-
ner and to automatically find representative pieces of music
for each cluster on each hierarchy level. To this end, audio
signal-based features are complemented with features de-
rived via Web content mining in a novel way. Automatic
hierarchical clustering is performed using a variant of the
Self-Organizing Map, which we further modified in order to
create playlists containing similar tracks.
The proposed approaches for playlist generation on a hier-
archically structured music collection and finding prototyp-
ical tracks for each cluster are then integrated into the Trav-
eller’s Sound Player, a mobile audio player application that
organizes music in a playlist such that the distances between
consecutive tracks are minimal. We extended this player to
deal with the hierarchical nature of the playlists generated
by the proposed structuring approach.
As for evaluation, we first assess the quality of the clustering
method using the measure of entropy on a genre-annotated
test set. Second, the goodness of the method to find proto-
typical tracks for each cluster is investigated in a user study.

1 INTRODUCTION AND MOTIVATION

Increased storage capabilities, high-speed Internet access,
and novel techniques for music compression have tremen-
dously increased the size of private as well as commercial
music collections over the past few years. Due to the large
number of audio tracks in private repositories, it is virtually
impossible for users to keep track of every piece. Hence,
elaborate methods for organizing large music collections be-
come increasingly important. The enormous economic suc-
cess of high-capacity mobile music players, such as Ap-
ple’s “iPod”, necessitates intelligent methods for automated
structuring of music collections.
The paper at hand presents a possible solution to this prob-
lem. The approach proposed here employs an unsupervised
hierarchical clustering algorithm, more precisely the Grow-
ing Hierarchical Self-Organizing Map (GHSOM) [3], on
audio features extracted from the music collection. Each

cluster of the resulting hierarchical organization is then la-
beled automatically with a typical track from the cluster to
facilitate exploration. To this end, we elaborated an origi-
nal approach that not only relies on audio features, but in-
corporates Web-based information on the prototypicality of
artists to determine a representative track for each cluster.
The main motivation for this is the bad quality of straightfor-
ward methods to find a representative for a set of data items.
Indeed, choosing for example the music track whose audio
feature representation is closest to the average feature vector
of the cluster may give a mathematically sound prototype for
the cluster. However, in preliminary experiments that em-
ployed this selection approach, we encountered many rep-
resentatives that were either songs by barely known artists
(even though the cluster contained very well known artists)
or barely known tracks by popular artists. In any case, using
such tracks as representative for a cluster seems counterin-
tuitive to guide the user in exploring his music collection.
The main contributions of this work are the novel approach
to determine cluster prototypes, based not only on the au-
dio features, but also on Web mining techniques, in order to
omit “average” cluster representatives that are unknown to
most users. In addition, we reimplemented the GHSOM al-
gorithm and modified it in order to generate playlists. Fur-
thermore, a novel version of the Traveller’s Sound Player
application, which uses the cluster prototypes to facilitate
navigating the collection, is proposed. The approaches to
generate playlists and finding cluster prototypes are further
evaluated thoroughly.
The remainder is structured as follows. Section 2 briefly
discusses related work. In Section 3, the acquisition of fea-
ture data to describe artists and pieces of music is elabo-
rated. Our approaches to hierarchically cluster a given mu-
sic collection and creating playlists from these clusters can
be found in Section 4, whereas finding representative pro-
totypes for each cluster is addressed in Section 5. The ex-
periments conducted to evaluate the proposed approaches
are detailed in Section 6. Finally, Section 7 gives some re-
marks on the integration of the presented approaches in the
Traveller’s Sound Player application, and in Section 8, con-
clusions are drawn.



2 RELATED WORK

This paper was mainly motivated by the work done in [9],
where Pohle et al. employ different heuristics to solve a
Traveling Salesman Problem on a track-level audio simi-
larity matrix. The resulting tour represents a playlist with
minimized distances between consecutive pieces of music.
The playlist generated for a complete music collection is
then made accessible via a special music player. In [8], this
approach is modified in that the audio similarity matrix is
adapted according to artist similarity estimations, which are
derived from TF×IDF features computed on artist-related
Web pages. In contrast to [9, 8], we do not model a Trav-
eling Salesman Problem to generate playlists. Instead we
follow a recursive approach that builds upon the GHSOM
algorithm to hierarchically break down the tracks of a mu-
sic collection until every track is represented by a sole map
unit. The playlist is then generated by successively visiting
each such unit.
As we build our playlist generation approach upon a variant
of the GHSOM, a hierarchical version of the Self-Organizing
Map, this work is certainly also related to [3, 4], where the
GHSOM is presented.

3 FEATURE EXTRACTION

As we combine features extracted from the audio signal with
cultural features from the Web in order to determine pro-
totypical pieces of music for each cluster, we perform the
following two feature extraction stages.

3.1 Audio-based Features

First, we extract audio features using a well-established ap-
proach. For each piece of music, Mel Frequency Cepstral
Coefficients (MFCCs) are extracted on short-time audio seg-
ments to obtain a coarse description of the spectral shape.
Details on this procedure can be found, for example, in [2, 1,
7]. Gaussian Mixture Models (GMMs) are then used to ag-
gregate the MFCCs of each individual piece of music. The
similarity between two arbitrary pieces is calculated as the
inverse of the distance between their GMMs. For our exper-
iments, we used parameters similar to those proposed in [1]
(19 MFCCs, 30 clusters per GMM). Performing this proce-
dure for a collection of n music pieces eventually yields an
n× n distance matrix.

3.2 Web-based Features

In order to estimate the prototypicality of each artist in the
collection, and thus his or her suitability to serve as repre-
sentative for a cluster, we make use of information found
on artist-related Web pages. To this end, we follow the ap-
proach backlink/forward link ratio with exorbitant popular-
ity penalization as proposed in [11, 12]. The basic assump-
tion underlying this approach is that the probability that a

popular artist is mentioned on a Web page about a rather
unknown artist is higher than vice versa. This seems rea-
sonable if one thinks, for example, of references of the form
“Band X sounds like band Y.”. Such phrases are more likely
to occur on a Web page of a rather unknown band X, which
points to a popular band Y than vice versa.
For each artist, we retrieve up to 150 Web pages returned by
Google for queries of the form "artist name"
+music+review. This query scheme was originally pro-
posed in [13] for retrieving artist-related Web pages. Sub-
sequently, the Web pages of each artist are analyzed for oc-
currences of all other artist names in the collection, and the
respective document frequency dfa,B (i.e., the number of
Web pages in the set B of retrieved pages for artist b on
which the name of artist a occur) is stored for all combina-
tions of artists.
To estimate the prototypicality of an artist a for a specific
set of tracks given by cluster u 1 , we compare the document
frequencies dfa,B and dfb,A for all b’s in the same cluster
u as a. We count for how many of these b’s the inequality
dfa,B ≥ dfb,A holds. The higher this count, the more proto-
typical artist a. Performing this calculation for all artists of
a specific cluster u, we obtain an artist prototypicality rank-
ing ru(a). However, this ranking is usually quite distorted
as artist names like “Genius”, “Kiss”, or “Bush” are always
overrated. Addressing this issue, a penalization term that
downranks artists whose prototypicality is extremely high
for all clusters (which actually cannot be the case) is intro-
duced. This eventually gives a corrected ranking function
ru
w(a). For a more detailed elaboration on the prototypical-

ity ranking function, please see [12].

4 ADAPTING THE GHSOM FOR PLAYLIST
GENERATION

Structuring the music collection under consideration is per-
formed using an unsupervised neural network algorithm that
automatically organizes a given data set in a hierarchical
manner. More precisely, we reimplemented in Java a hier-
archical extension of the Self-Organizing Map, namely the
Growing Hierarchical Self-Organizing Map (GHSOM), as
proposed in [3]. The GHSOM has been integrated in the
CoMIRVA framework [10].
The GHSOM extends the widely used Self-Organizing Map
[6] in a way that during training, new map units are auto-
matically inserted into the existing grid between the map
unit whose data items show the highest deviation from the
map unit’s model vector and its most dissimilar neighboring
unit. This is performed until the mean quantization error of
all map units is reduced to a certain threshold τ1. Hence,
τ1 controls the final size of the individual SOMs. A second
threshold τ2 determines the quantization error a particular
map unit must exceed in order to reorganize its data items on

1 In our case, the clusters are given by the map units of the Self-
Organizing Map that we use to organize the collection (cf. Section 4).



a newly generated SOM at a deeper hierarchy level. A more
detailed explanation of the GHSOM algorithm is given, for
example, in [3].
In order to suit our need for playlist generation, we had
to modify the original GHSOM algorithm in two regards.
First, we redefined the neighborhood function used in the
training process. In particular, we defined a cyclic neighbor-
hood relation that extends its range over the map’s borders,
i.e., considers the last row/column of the map whenever a
map unit in the first row/column is modified and vice versa.
Second, each time a map unit u is expanded to a new SOM
at a deeper hierarchy level, this new SOM is initialized us-
ing the model vectors of u’s neighboring units.
These two modifications allow for a very simple playlist
generation approach in that we just have to train a 1-dim-
ensional GHSOM on the input data and ensure the recursive
expansion of map units until each track is represented by
its sole unit. Traversing the resulting GHSOM tree in pre-
order while successively storing all tracks represented by the
leave nodes eventually yields a playlist containing all pieces
of the collection. As for training the GHSOM, we use the
audio similarity matrix, whose creation is described in Sub-
section 3.1. For performance reasons, however, we apply
Principal Components Analysis (PCA) [5] to reduce the di-
mensionality of the feature space to 30. 2

5 FINDING CLUSTER PROTOTYPES

One of the main goals of this work is determining proto-
typical tracks that can serve as representatives to describe
each cluster, i.e., map unit, of the GHSOM. However, pre-
liminary experiments showed that relying solely on audio-
based information to calculate a representative piece of mu-
sic for each cluster yields unsatisfactory results, as already
explained in Section 1. To alleviate this problem, we in-
corporate artist prototypicality information extracted as de-
scribed in Subsection 3.2 into an audio-based prototypical-
ity ranking. The resulting ranking function thus combines
audio features of all tracks in the cluster under consider-
ation with Web-based artist prototypicality information as
detailed in the following.
Denoting the map unit under consideration as u, the ranking
function ru(p) that assigns a prototypicality estimation to
the representation in feature space of each 3 piece of music
p by artist a is calculated as indicated in Equation 1, where
ru
s (p) denotes the audio signal-based part of the ranking

function (cf. Equation 2) and ru
w(a) is the corrected Web-

based ranking function from Subsection 3.2. In the signal-
based ranking function, u denotes the mean of the feature
vectors represented by u, | · | is the Euclidean distance, and
norm(·) is a normalization function that shifts the range to

2 30 dimensions seemed appropriate for our test collection of 2,545
pieces of music. Employing the approach on larger collections, most prob-
ably requires increasing this number.

3 More precisely, “each” refers to those pieces of music that are repre-
sented by the map unit u under consideration.

[1, 2]. Finally, each piece of music p represented by map unit
u is assigned a prototypicality value, which is the higher, the
more prototypical p is for u.

ru(p) = ru
s (p) · ru

w(a) (1)

ru
s (p) = norm

(
1

1 + ln(1 + |p− u|)

)
(2)

6 EVALUATION

We conducted two sets of evaluation experiments. The first
aimed at comparing our GHSOM-based playlist generation
approach to the ones proposed in [9, 8]. In accordance with
[9], the quality of the playlist was evaluated by calculating
the genre entropy for a number of consecutive tracks. Sec-
ond, we assessed the quality of our approach to detecting
prototypical tracks via a user study.
For evaluation, we used the same collection as used in [8].
This collection contains 2,545 tracks by 103 artists, grouped
in 13 genres. For details on the genre distribution, please
consider [8].

6.1 Entropy of the Playlist

To evaluate the coherence of the playlists generated by our
GHSOM-based approach, we compute the entropy of the
genre distribution on sequences of the playlists. More pre-
cisely, using each piece of the collection as starting point,
we count how many of n consecutive tracks belong to each
genre. The result is then normalized and interpreted as a
probability distribution, on which the Shannon entropy is
calculated, according to Equation 3, where log2 p(x) = 0 if
p(x) = 0.

H(x) = −
∑

x

p(x) log2 p(x) (3)

In Figure 1, the entropy values for n = 2 . . . 318 are
given (plot “audio ghsom”), averaged over the whole play-
list, i.e., each track of the playlist is chosen once as the start-
ing track for a sequence of length n. 4

Comparing the entropy values given by the GHSOM ap-
proach to the ones presented in [8] reveals that the GH-
SOM approach performs very similar to the SOM-based ap-
proach followed in [8]. This is obviously no surprise, but
shows that the automated splitting of clusters by the GH-
SOM does not harm the entropy of the generated playlists,
while at the same time offers the additional benefit of auto-
matically structuring the created playlists in a hierarchical
manner. Like those created by the recursive SOM approach
in [8], the GHSOM-based playlists show quite good long-
term entropy values (for large values of n), but rather poor
values for short playlists.

4 318 tracks correspond to an angular extent of 45 degrees on the circular
track selector in the Traveller’s Sound Player application.



Figure 1. Genre entropy values for n consecutive tracks of
the GHSOM-based playlist.

We also experimented with incorporating Web-based fea-
tures directly into the playlist generation algorithm, as pro-
posed in [8]. This improved on the one hand the entropy val-
ues (cf. plot “combined ghsom” in Figure 1). On the other
hand, taking a critical look at the resulting playlists showed
that using Web-based artist features as proposed in [8] yields
“too perfect” playlists in that often one and the same artist
contributes 20 or more consecutive tracks. Hence, this ap-
proach may be suited well for creating very consistent, but
sometimes boring, playlists.

6.2 Quality of the Prototype Estimation

To evaluate the quality of the cluster representatives as deter-
mined by the approach proposed in Section 5, we performed
a user study. The evaluation sets for the user study were
created by training a 1-dimensional GHSOM with an initial
number of 5 rows and gradient initialization. The growing
threshold τ1 was set to 0.5, the expansion threshold τ2 to 0.1.
We performed sequential training with a training length of 5
epochs. This setting resulted in a GHSOM with 11 clusters
on the first level. 5

We had 16 participants in the study, each of which evalu-
ated 11 sets of tracks, consisting of 10 tracks each. 10 out
of these 11 sets were constructed as follows. The most pro-
totypical track of each cluster, according to our approach,
was added to the corresponding set. The remaining 9 tracks
were selected by drawing a random sample from their re-
spective cluster. The 11th set (for cluster 6) in contrast
contained exactly the same pieces of music for all partici-

5 Level 1 is the first distinctive level of the GHSOM as level 0 contains
all data items.

pants. 6 . The reason for this different creation method for
cluster 6 is that we also wanted to take a qualitative look at
some of the results, which would have been barely feasible
for a large number of differing track sets, each of which is
evaluated by only one user. We followed this rather com-
plicated procedure of track set generation in order to raise
the total number of evaluated sets. This procedure yielded
161 different track sets (16 participants · 10 sets + 1 invari-
ant set for all participants). Each participant was instructed
to select one track from each set that should be best suited
to represent the corresponding set. We offered the partici-
pants the artist and song names as well as the audio files in
case they were uncertain or unfamiliar with artist or track.
In total, we received 176 prototype selections, which were
analyzed as follows.

To obtain a general performance measure, we first calcu-
lated the overall concordance between the prototypes found
by our automated approach and those indicated by the par-
ticipants. Table 1 gives these overall concordance values
over the 176 evaluated track sets. We assessed the concor-
dances on different levels. The first row depicts the exact
concordance of the tracks, i.e., in order to be considered
concordant, the track given by our approach must be the
same as the one selected by the user. This definition of
concordance is weakened for rows two and three as our ap-
proach and the user judgment must, in this case, agree only
on the artist or on the genre, respectively.
At first glance, these results may not seem very promising.
However, taking the difficult nature of the user task into ac-
count (choosing between 10 probably quite similar tracks,
many of which are by the same artists), it must be regarded a
success that the concordance values considerably exceeded
the baseline. The difficulty of the task is also reflected by
the relatively high mean genre entropy of 1.95 over all track
sets. This number is obviously higher than the entropy value
given in Figure 1 for n = 10 because of the randomized se-
lection process involved in the creation of the track sets.
Taking a closer look at the individual track sets, we often en-
countered the problem that the sets contained approximately
equal numbers of tracks from two or three different genres.
To analyze the influence this may have had on the evaluation
results, Table 2 shows, for each group of sets (created from
clusters 1 to 11 of the GHSOM), the absolute number of
users that agreed with the prototype found by our approach
(column “hits”) and the mean genre entropy of the respec-
tive track set. Note that the entries are ordered by their aver-
age entropy. The baseline is 1.6 as each group was evaluated
by 16 participants; a random guesser would have yielded a
hit rate of 10% in the long run. From Table 2, we can see
that high entropy values in fact tend to correspond to low hit
rates and vice versa. The low hit rate of 2 for the group with
the lowest entropy, however, can be explained by the fact

6 Cluster 6 also contained the prototype and a random sample of 9 other
tracks, but this sample remained constant for all participants



level baseline concordance
track 10.00 17.61
artist 15.17 26.14
genre 35.34 50.57

Table 1. Overall concordance of the prototype finding algo-
rithm and the user judgments, in percent.

that this group subsumed music by different, but all famous,
metal bands. Furthermore, in most track sets of this group,
2 or 3 tracks by “Cannibal Corpse” were included, one of
which was also rated the prototype by our approach. But the
others were usually no less famous tracks by this band.
The identical composition of cluster 6 for all participants
allowed us to take a qualitative look at the ranking results
on the level of individual tracks. Table 3 summarizes these
results. In this table, the evaluated tracks of cluster 6 are
displayed in decreasing order of their prototypicality as de-
termined by our approach. The leftmost column gives the
number of times the respective track was selected as clus-
ter representative by a participant. As for the composition
of cluster 6, it mainly contained punk rock and folk rock
songs, but also a metal song by “Pantera”, which somehow
also fits into this cluster, and a real outlier by the German
electronic music producer “Scooter”. From Table 3, it can
be seen that about 56% (9 out of 16) of the user hits account
for the top 3 rankings by our approach. On the other hand,
also the lowest ranked two tracks by “Bad Religion” were
chosen by 25% of the users. This is no surprise as this band
may be seen as equally prototypical for the punk rock genre
as the top ranked band “Offspring”. The remaining 3 user
hits were given to the tracks by “Subway to Sally”. Since
the randomly drawn sample included 3 tracks of this band
in the evaluation set, it seems that some users considered the
set best represented by a track by this artist. None of the par-
ticipants, however, selected one of the outliers by “Pantera”
or “Scooter” as representative.
To summarize the results, even though they certainly leave
enough room for improvement, most users at least roughly
agreed with the prototypicality ratings given by the pro-
posed approach. Moreover, taking into account the espe-
cially difficult task the participants in the user study had to
perform and the quite heavy mixtures of different genres in
the track sets, the results are surprisingly good.

7 A NOVEL VERSION OF THE TRAVELLER’S
SOUND PLAYER

The basic idea of the Traveller’s Sound Player (TSP) pre-
sented in [9] is to arrange the tracks in a music collection
around a wheel that serves as track selector. The authors
of [9] aim at performing this arrangement in a way such
that consecutive tracks are maximally similar. To this end,
a large circular playlist is created by solving a Traveling
Salesman Problem on an audio similarity matrix. A draw-

group hits entropy
4 2 0.9609
5 7 1.3385
6 4 1.6855
3 4 1.7516
2 2 2.0189
7 5 2.1068
8 2 2.1785
1 3 2.2763
0 2 2.2772
9 0 2.4343
10 0 2.5372

Table 2. Number of correctly found prototypes and mean
entropy values for each of the 11 playlists.

hits ranking track name
4 0 offspring - hypodermic
2 1 offspring - leave it behind
3 2 blink 182 - don’t leave me
0 3 pantera - strength beyond strength
0 4 scooter - back in the u.k.
2 5 subway to sally - mephisto
1 6 subway to sally - ohne liebe
0 7 subway to sally - böses erwachen
3 8 bad religion - let them eat war
1 9 bad religion - markovian process

Table 3. Detailed results of the user study for group 6, i.e.,
the group containing identical tracks for all participants.

back of the original version of the TSP is, however, that it
does not guide the user in finding a particular style of music
he or she is interested in. Indeed, the user has to explore dif-
ferent regions of the playlist by randomly selecting different
angular positions with the wheel. It is also very hard to ex-
actly position the wheel at a specific track as thousands of
tracks are placed around one wheel, which corresponds to
an angular representation in the magnitude of tenths of one
degree for each track.
Addressing these shortcomings, we propose to integrate the
prototype information found by our GHSOM-based approach
presented in Section 5 into the TSP. To this end, we elabo-
rated an extension to the TSP that allows for hierarchically
exploring the music collection by means of the cluster pro-
totypes. More precisely, the novel user interface maps the
structure of the collection, as given by the trained GHSOM,
to the wheel. It thus reflects the hierarchical organization in
that the user is first only presented the prototypes of the first
level clusters. He or she can then either opt for playing the
representative track or for descending to a lower hierarchy
level. On each level, the user is presented a playlist con-
taining the most prototypical tracks of all clusters (be them
either single map units or other GHSOMs at a deeper level)
that make up the GHSOM at the current level.



8 CONCLUSIONS AND FUTURE WORK

We presented an approach to automatically cluster the tracks
in a music collection in a hierarchical fashion with the aim
of generating playlists. Each track is represented by similar-
ities calculated on MFCC features, which are used as input
to the clustering algorithm. To this end, we reimplemented
and modified the Growing Hierarchical Self-Organizing Map
(GHSOM). We further proposed an approach to determine,
for each of the clusters given by the GHSOM, the most rep-
resentative track. This is achieved by combining the MFCC-
based audio features with artist-related information extracted
from the Web. We finally integrated the two approaches
into a music player software called the “Traveller’s Sound
Player”, for which we elaborated an extension to deal with
the hierarchical data.
We carried out evaluation experiments in two ways. First,
we aimed at assessing the coherence of the playlists gen-
erated by the GHSOM approach by measuring their genre
entropy. We compared these entropy values to those given
by other playlist generation approaches and found that they
largely correspond to a similar approach based on standard
SOMs. In addition, our approach also yields a hierarchically
organization of the collection and determines a representa-
tive for each cluster, while at the same time the good long-
term entropy values of the (GH)SOM-based playlist gener-
ation are retained. Second, we conducted a user study to as-
sess the quality of the found cluster prototypes. Even though
the results are still improvable, we could exceed the baseline
considerably. Especially when taking into account the chal-
lenging setup of the user study, the results are promising.
As for future work, we are thinking of integrating the artist
distribution of the clusters into the ranking function, as the
user study showed that users tend to prefer representative
tracks by artists who occur often in the cluster under con-
sideration. Similar considerations would probably also be
suited to filter out outliers. Furthermore, we have to experi-
ment with different user interfaces for hierarchically access-
ing music collections as the integration of the cluster repre-
sentatives into the Traveller’s Sound Player is currently done
in a quite experimental fashion. Our special concern in this
context will be the usability of the user interface for mobile
devices.
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