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ABSTRACT

Modern digital multimedia and internet technology have
radically changed the ways people find entertainment and
discover new interests online, seemingly without any phys-
ical or social barriers. Such new access paradigms are in
sharp contrast with the traditional means of entertainment.
An illustrative example of this is live music concert perfor-
mances that are largely being attended by dedicated audi-
ences only.

This papers introduces the PHENICX project, which aims
at enriching traditional concert experiences by using state-
of-the-art multimedia and internet technologies. The project
focuses on classical music and its main goal is twofold:
(a) to make live concerts appealing to potential new au-
dience and (b) to maximize the quality of concert experi-
ence for everyone. Concerts will then become multimodal,
multi-perspective and multilayer digital artifacts that can
be easily explored, customized, personalized, (re)enjoyed
and shared among the users. The paper presents the main
scientific objectives on the project, provides a state of the
art review on related research and presents the main chal-
lenges to be addressed.

1. INTRODUCTION

In the current digital age, access to recorded music is read-
ily available. This makes it very easy to serendipitously get
confronted with unknown music genres on (social) stream-
ing services. However, barriers can be experienced to re-
ally go out and experience a live performance of such an
unknown music genre: the walls of an unknown concert
venue put up a physical barrier, and at the local etiquette
of the social community that identifies most strongly with
the performed music puts up a social barrier. If people who
would be interested in exploring live performances of un-
familiar music will be faced with an isolated, imposed and
standardised concert situation they do not naturally iden-
tify with, they thus will remain ’outsiders’ to the music
and its entourage.

Present-day technologies can change the way we access
and enjoy musical concerts today. A wealth of musical
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information is available on the web, ranging from artist in-
formation to scores and lead sheets or other related infor-
mation about musical pieces. Employing automated anal-
ysis techniques, it is possible to find a way through all this
supporting information, tailored to our backgrounds and
interests. Linking this to live concert performance data, an
enriched and deepened experience of the performed music
can be created in a personalised way. This can trigger our
curiosity to see more of such performances, and share the
experience over social media to our friends who then can
pick up interest in this as well.

Following these considerations, the PHENICX project was
conceived. It focuses on researching how to improve the
accessibility of live music concert performances by ad-
dressing two main objectives:

Transforming live music concert performances into
enriched multimodal, multi-perspective and
multilayer digital artefacts

With multimodal, we mean different musical modalities,
such as audio, video, and symbolic scores. Withmulti-
perspective, we mean that a concert performance can be
considered from different viewpoints: physical viewpoints
in a concert hall and different user perspectives depen-
dent on their backgrounds and intents. Withmultilayer,
we mean that multiple music concert performance descrip-
tors can be relevant at the same time, working at differing
levels of specificity (e.g. requiring general or sophisticated
musical knowledge) and considering different time scale
resolutions. Automated and multimodal music description
techniques are relevant to this objective, such that they will
yield meaningful descriptors from the considered musical
pieces. In our approach, performance information is char-
acterised along two dimensions: that of themusical piece
(objectivedescriptors, valid for any rendition of the piece),
as well asits actual performance(descriptors on individual
expressive and interpretative aspects that make one perfor-
mance different from another).

Presenting digital music artefacts as engaging digital
experiences that can be explored, (re)enjoyed and
shared in many customisable and personalised ways

For this, we need advanced user profiling and community
characterisation techniques, which will pave the way for
sophisticated personalisation techniques. Next to that, tech-
niques for dedicated and adaptive information selection and

mailto:phenicx@upf.edu
http://creativecommons.org/licenses/by/3.0/


Figure 1. PHENICX view of a musical concert.

presentation has to be investigated, as well as interactive
opportunities for audiences to engage even more with the
performance.

By working towards these objectives as outlined above,
we can transform the current audience experience of con-
cert performances, break the physical and social barriers
and decrease the perceived distance between musical per-
formers and their concert audiences.

This transformation entirely takes place in the digital do-
main. Performing musicians themselves will therefore not
have to change their way of performing, maintaining their
original performance traditions.

2. PRACTICAL SETTING

The PHENICX project will mainly focus on Western clas-
sical music in large ensemble settings. Classical music is a
very strong example of European cultural heritage, which
suffers from very strong audience stereotypes, and the gen-
eral image of being a complex and possibly boring genre.
As such, it does not straightforwardly attract new audi-
ences, and its live performance tradition may be endan-
gered as outlined in our Motivation. As will be outlined in
the remainder of this paper, Western classical music also
poses several interesting research challenges that are not
encountered for other musical genres, and thus can help in
pushing scientific advances in music and multimedia infor-
mation retrieval forward. The project will be structured in
four different research and development areas.

Multimodal musical piece analysis: the project will re-
search on suitable analysis techniques for automatic de-
scription and enrichment of the considered musical pieces.

Multimodal musical performance analysis: the project
will also address performance aspects by extracting expression-
related features from audio signals and other modalities
(e.g. score, video), synchronizing performances with their
score and with alternative performances of the same piece,
and characterizing performer’s or conductor’s gestures.

Profiling and personalization, in order to adapt concert
experiences to different user profiles.

Exploration and interaction , as a way to enhance the
concert experience through music visualization, person-
alised musical information and interactive systems for con-
ductor/performer impersonation.

In the following sections, we discuss relevant scientific
state-of-the-art in these areas and corresponding challenges
as foreseen for PHENICX. A discussion on how these chal-
lenges can be validated in real world end-user settings will
be available in [1].

3. MULTIMODAL MUSICAL PIECE ANALYSIS

The main goal of the research related to musical piece anal-
ysis in the project is to provide the audience with meaning-
ful information about the music material played in the con-
cert, including musical descriptors (e.g. theme, melodic
line, key, structure), semantic labels (e.g. mood), similar
pieces, or links to existing online information about per-
formers, composers or instruments. Moreover, the project
will research on audio processing technologies to separate
the different sections of the orchestra from mixed record-
ings in order to allow multi-perspective listening experi-
ences.

3.1 Content-based feature extraction and similarity

Current techniques are capable of automatically obtaining
features from music recordings related to different musi-
cal facets such as melody, harmony, rhythm and instru-
mentation. These descriptors are exploited by music re-
trieval and recommendation systems to compute similarity
distances and to classify musical pieces according to e.g.
artist, genre or mood [2].

However, there is a glass ceiling in current feature extrac-
tors. The accuracy of state-of-the-art methods for audio
feature extraction does not go beyond 80% (results slightly
vary for different tasks, e.g. onset detection, genre classi-
fication, chord detection, predominant melody extraction),
even though they are not always evaluated on realistic sit-
uations (limited, e.g. to simple music material). In addi-
tion, there is a semantic gap between existing descriptors
and expert musicological analyses. For instance, similarity
algorithms have been traditionally based on low-level tim-
bre descriptors, beat tracking is not accurate for expressive
music with varying tempo, and melodic/harmonic descrip-
tors are often limited to global key, which has shown to be
poor to represent the tonal content of a musical piece. In
the foreseen project, we will research on the best strate-
gies for our particular repertoire, classical music in large
ensemble settings. We will address the limitations of state-
of-the-art methods for predominant melody estimation [3],
rhythm description [4] and tonal analysis [5] to deal with
our particular music material.

In the project, we should finally investigate to what ex-
tent differing application contexts may have different no-
tions of similarity, both from a systems and user perspec-
tive, and we will consider hybrid approaches (integrating
different descriptors and temporal resolutions) as proposed
in [6]. For example, a scholar studying a particular piece
may wish to gather many recordings of the piece and will
consider these recordings to be dissimilar in comparison to
each other, while to a novice unfamiliar with the piece, all
these recordings will sound very similar to each other, and
any differences between them are not as relevant. While



this has not frequently been addressed in literature yet, itis
an important topic to investigate since it will influence the
ultimate success of a music information system.

3.2 Music auto-tagging

The process of automatically assigning semantically mean-
ingful labels to representations of music is commonly known
as auto-tagging. So far, auto-tagging has mostly been per-
formed on the level of artists (e.g. [7,8]) or songs (e.g. [9,
10]); only few works [11, 12] have addressed tagging of
segments within a song.

To the PHENICX project, it is useful to automatically
be able to obtain label descriptions for recorded perfor-
mances. However, this means that research beyond the cur-
rent state-of-the-art is needed. First of all, current methods
strongly focused on pop music. In classical music, a ‘song’
will typically be much longer than in pop music, which
means that more work is needed into obtaining segment-
level descriptors. Furthermore, the multimodal and social
setting of the project allows for the consideration addi-
tional data sources such as social tags, which can be gath-
ered from collaborative tagging systems, textual features
extracted from web pages or microblogs, or even simple
visual features mined from images (e.g., album covers or
photographs). However, once again, if these additional
data sources were considered in previous work (which is
uncommon, since the predominant focus has been on au-
dio information only), this was in the pop music domain,
and it should still be investigated to what extent they will
be equally informative for the classical music domain.

3.3 Linking web sources of music

In PHENICX, we should extract information about per-
formers and instruments, aim for a multimodal approach
which enriches the presentation with videos, images and
other supporting material, including possible alternative
performances of the same piece. This means that different
sources of music information need to be linked together.

Classical music is ontologically more complex than pop
music: in many cases, we are not just dealing with songs
performed by artists, but with a piece consisting of multi-
ple movements, written by a composer, and interpreted by
varying groups of performing artists. In terms of Seman-
tic Web technology facilities, the Music Ontology [13] is a
rare example of an ontology which has been expanded to
deal with classical music cases, and as such will be of ac-
tive interest for PHENICX. However, in the imperfect real
world, (metadata) information on classical music may not
always be cleanly and consistently labeled following this
ontology. Therefore, effort will be investigated in tech-
niques to still match this imperfect data.

As an example of a multimodal music information sys-
tem involving web-scale information, [14] should be men-
tioned, presenting a system offering information about sim-
ilarities between music artists or bands, prototypicalityof
an artist or a band for a genre, descriptive properties of an
artist or a band, band members and instrumentation, and
images of album cover artwork is performed. Once again,
this system was aimed at popular music, and it should be

verified to what extent the approach will translate to the
classical domain.

3.4 Multi-perspective audio description: source
localisation and separation

One characteristic of orchestral music concerts compared
to other amplified musical live performances is how sound
is propagated from the performers to the audience. Sound
sources are spread over a large stage area creating an acous-
tic image in front of the audience, which is affected then by
the acoustics of the concert hall. A recording setup might
consist principally of a stereo pair microphones placed near
the conductor. In a typical setup, however, this stereo track
can be complemented with a number of zenithal micro-
phones covering specific instrumental sections. These zenithal
tracks are used to find the right balance in the final master-
ing mix.

One of the objectives of the project consists in obtaining
the localisation of the active instruments on stage from a
set of recorded tracks. This process shall include means of
providing a source signal separation. In our scenario, we
might take advantage of additional data such as the score or
source positioning informations (e.g. instrument sections).

State of the art methods of source localisation include
beamforming techniques, which take input signals from
sensor arrays. Other specific techniques address the case of
stereo signals [15]. Regarding source separation, state of
the art techniques involve Non-negative Matrix Factorisa-
tion (NMF) and PLCA [16], but more recent techniques are
also based on signal-models that exploit musical knowl-
edge [17]. Score-informed techniques such as [18] are spe-
cially relevant in the context of the project.

4. MULTIMODAL MUSICAL PERFORMANCE
ANALYSIS

The central purpose of research related to musical perfor-
mance analysis in the PHENICX project is to give the au-
dience or music consumer deeper insights into the subtle
art of expressive performance, which is so central to clas-
sical music. This requires methods for computing expres-
sive aspects (e.g., tempo and timing) from recorded or live
performance – which in turn requires methods for align-
ing performances to scores, or to each other –, models for
explaining, predicting, and visualising expressive aspects,
and methods for recognising and characterising expressive
actions by the musicians that are not readily apparent from
the audio signal (for instance, gestures by the conductor).
The latter will also be used to devise ways of directly in-
teracting with performances via gestures.

4.1 Score-performance alignment,
performance-to-performance matching, and real-time
score following

Computing a one-to-one alignment between a performance
and another representation of the same piece is important
for several purposes in the project. We distinguish three
cases: (1) aligning a recorded performance (audio record-
ing) to the musical score (“score-performance alignment”),



(2) aligning two or more performances (audio recordings)
to each other (“performance-to- performance matching”),
and (3) aligning an ongoing performance (coming in as an
audio stream) to the score in real time (“performance track-
ing” or “real-time score following”).

In the case ofscore-performance alignment, the score
is usually either rendered to audio, or acoustic features
are computed directly from the score. Most alignment al-
gorithms then use some kind of Dynamic Time Warping
(DTW) to find an optimal global alignment [23–25], or
model the musical processes via statistical graphical mod-
els [26,27]. PHENICX will focus on the DTW approach,
starting from and improving the methods proposed in [25],
which rely on the percussiveness of the considered instru-
ments sounds. Although recent efforts towards timbre-
invariant audio features are promising [28], generalising
the above methods to the wide variety of orchestral in-
struments will require the design of new audio features, as
well as fundamental modifications to the general top-down
alignment strategy. A second class of challenges concerns
the possibility of structural differences between score and
performance, or between performances [29, 30]. We be-
lieve these problems can more easily solved in DTW-based
methods.

With respect toreal-time score following, there are also
two competing approaches, again based on either (online)
DTW (OLDTW) or graphical models and probabilistic in-
ference (e.g., [31,32]. Recent research on DTW-based per-
formance tracking [29] looks extremely promising – not
only with respect to computational efficiency and low la-
tency, but also w.r.t. robustness against playing errors,
omissions and insertions.

The biggest challenge in real-time tracking of classical
music is to design more effective predictive tempo models,
for the system to be able to anticipate abrupt changes in
local tempo, or the return of the soloist or orchestra after a
long rest. Here, the above predictive performance models
will play an important role.

4.2 Explanatory and predictive computational models
of expressive performance

Despite considerable research over several decades, our
knowledge of the factors that shape musical expression is
still far from complete. Valuable explanatory models do
exist, but they tend to focus on highly specific aspects of
performance, such as the form of a final ritard [19] and the
effect of phrase structure on tempo [20]. With advances
in both sensor technology and automatic transcription of
musical audio, much more substantial empirical data is
now becoming available [21], and these now allow for a
paradigm-shift from the classical music-theory driven ap-
proach to a data mining approach, inspiring new computa-
tional models of expressive performance.

In this context, Grachten and Widmer [22] recently pro-
posed a framework for modeling expressive performance.
It allows to estimate the contribution of arbitrary features
of the musical score (including, but not limited to expres-
sive markings annotated in the score) in shaping expressive
characteristics of the performance, such as tempo, loud-

ness, and articulation. Musical features are represented as
basis functions, which are linearly combined over one or
more performances, to approximate their expressive char-
acteristics. This framework can be used for explanatory
modeling, and thereby provide the users with precise char-
acterisations and explanations (e.g. in what ways do differ-
ent ensembles perform the same piece differently?). More-
over, as a computational model, the framework also allows
for predictive modeling. Accurate hypotheses about the
shape of musical expression in a performance can improve
score-performance alignment and real-time score follow-
ing [29].

4.3 Gesture recognition

The purpose of gesture recognition in the project is to pro-
vide additional insight into how expressive performances
are realized, and to facilitate interactive music-making sce-
narios. In the literature on the recognition of body gestures,
we can distinguish two main approaches: Machine learn-
ing (usually supervised – e.g., [33]) and analytical tech-
niques. The analytical description of gestures in order to
recognise them is the most used technique right now in
commercial applications and devices that require gesture
recognition. Other frameworks allow describing the ges-
tures rather than program them directly, as in [34] that al-
lows this description in a form of regular expressions.

In PHENICX we will consider an analytical approach to
recognise the principal components of specific symbolic
gestures for different instruments using a composition tech-
nique and an agent-based framework [35], as well as gen-
eral features of the whole body movement, and try to recog-
nise concurrent performances of these gestures at the same
time for multi-user interaction. More precisely, in the field
of studying body movement of music performers we can
find several approaches, like recording precise movement
of a violin bow to synthesise its sound [36] or (more related
to our approach) studies about “Air playing” [37]. Our re-
search will try to link body movements and gestures to high
level properties of music, such as loudness, tonality, tempo
and note density.

5. PROFILING AND PERSONALISATION

PHENICX strives to offer personalised music experiences.
This means that adequate user and recommendation mod-
els need to be set up.

An important direction to consider here is that of profiling
and personalisation through social media mining, in which
we build forth on techniques proposed in existing work in-
cluding [38–41]. Of these references, only [41] explicitly
deals with music recommendation, showing that users pre-
fer social recommendations (taking into account friends)
over non-social ones, and that social recommendations are
particularly well-suited to discover relevant and novel mu-
sic. However, the proposed user model is relatively coarse.
Furthermore, in general it is important to realize that apart
from general taste, a person’s preference for a certain item
will also be influenced by ad hoc context and search intent.

In existing music-related work, the concept of ‘context’



has been defined, gathered and incorporated in varying ways.
In [42], a study is presented investigating if and how vari-
ous context factors relate to music taste (e.g., human move-
ment, emotional status, and external factors such as tem-
perature and lighting conditions). Other work involving
context e.g. includes temporal context ( [43]), listening his-
tory and weather conditions ( [44]), walking pace or heart-
beat rate( [45,46]), geographical location [47] and driving
circumstances [48]. As for the latter work, while eight dif-
ferent contextual driving factors are considered, the appli-
cation scenario is quite restricted and the system relies on
explicit human feedback. In PHENICX, upon establishing
relevant context factors to the practical application scenar-
ios of interest, we will rather aim to rely on implicit user
feedback to adhere to the requirement of unintrusiveness,
which is a prerequisite for wide user acceptance.

The concept of ‘intent’ deals with the ‘why’ behind an
action. In terms of information search, moving beyond tex-
tual search, search intent is now increasingly being studied
for image and video domains (e.g. [49,50]. In PHENICX,
we strive to make another step forward in this field, by
explicitly studying and considering search intent and par-
ticular information needs in the music domain as well.

Finally, there are two recommendation aspects which have
not been studied extensively yet, but are well-known and
deserve closer examination within our project. First of all,
especially if different performances of the same piece are
considered to be different entities in a recommender sys-
tem (e.g. because the metadata does not fully match), ‘long
tail’ issues [51] will occur, in which many musical items
will have relatively low consumption counts. Furthermore,
we wish to advance towards serendipitous findings, build-
ing forth on a model for serendipitous music retrieval and
recommendation proposed by Schedl et al. [52], and es-
tablishing proper evaluation methodologies for this, as e.g.
presented in [53].

6. EXPLORATION AND INTERACTION

In the area of exploration and interaction, the project will
research on two different areas. The first one is to pro-
vide meaningful visualization of musical pieces and per-
formances from different layers as extracted by multimodal
piece and performance analysis (Section3-4). The second
one is to allow the audience to interact with the concert
from different perspectives according to source (section
3.4) and user profile (section5).

6.1 Visualisation of music pieces and performances

We can distinguish two qualitatively distinct sources of in-
formation to be exploited in visualisation: the score itself,
from which users can be informed about melodic lines,
harmony, motifs or structure; and a specific performance,
the specific way the written music was actually realized.
Performance differences such as timing, phrasing and dy-
namics are quite notable for the symphonic repertoire, be-
ing one of the main sources of engagement and enjoyment
for the audience. Moreover, both dimensions – score and
performance – can inform and enrich each other. For users

Figure 3. ‘Performance Worm’ visualisation of expressive
timing and dynamics in Beethoven’s First Piano Concerto.

with different musical backgrounds (e.g. naive listeners,
basic musical training, professional musicians), the most
relevant musical descriptions and their corresponding vi-
sualisations will differ in terms of modalities, types and
specificity levels. As outlined in section3.1, we will em-
ploy different types of automatic music descriptors, which
take different temporal scales into account, ranging from
short-time melodic description to global key properties.

Existing real-time music visualisation tools for tonality
include dynamic tracking in both audio and symbolic do-
mains [54], [55], but most of them are mostly intended to
inform musicians (in music theory terms). We propose an
extension of temporal multi-scale techniques for the analy-
sis and representation of a variety of audio and/or symbolic
features, through time-scale summarisation and mapping
into feature spaces and geometrical colourspaces. This has
been proposed for temporal multiscale tonality represen-
tations and interactive navigation of music pieces [5], il-
lustrated in figure2. For tonality, some of these models
have been validated as perceptually relevant by cognitive
psychology methodologies [56], and they have been used
to inform real-time music performances, such as jazz im-
provisations. This approach is being currently extended
beyond usual tonal simplifications, covering other musical
(non-tonal) representation domains, and as interactive con-
trollers for music creation.

In addition to properties of the music (the composition)
itself, we also want to visualise interesting aspects to the
specificperformance. Examples of performance visual-
ization are the Performance Worm [57] and more general
phase plane representations [58]. While these uncover rather
local timing and dynamics patterns, multi-level visualisa-
tions such as the Timescapes used in [59] can visualise how
expressive timing shapes a piece at many levels simulta-
neously, making explicit also long-term developments and
large-scale structure in a performance.

For live, real-time visualisation on stage, visualisation
methods must be integrated with a real-time performance
tracker, which is less trivial than it may seem. For instance,
all of the above-mentioned methods rely on some kind of
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Figure 2. Multiscale tonality visualization of Finale of Haydn’s ”Rider” String Quartet, op.74 n.3 (in Gm).

smoothing over time, and in doing so, effectively need to
look ‘into the future’ of a given point in time. Predictive
performance models may alleviate this problem. More-
over, timing and (global) dynamics are only two aspects
of a much more complex and multi-faceted phenomenon.
We will also investigate new ways of visualising dimen-
sions such as articulation, balance of the voices/instrument
sections in the orchestra, etc.

6.2 Multi-perspective audio processing: source
auralisation

With the separated signals and information about the in-
struments location as presented in Section3.4, we can at-
tend a meaningful process of auralisation. Recent approaches
have addressed the concept of upmixing (i.e. providing a
spatial multi-channel output from a mono or stereo audio
signal) by means of source separation techniques [60]. The
challenge here is to provide a meaningful auralisation of
the orchestral content by exploring different options from
an acoustic zoom for a given instrument section, to virtu-
ally place the listener in a specific position on stage.

6.3 User-generated and multi-perspective concert
video

Finally, it is of relevance to mention recent approaches re-
garding multi-perspective and user-generated concert video
content. This topic has been emerging in several recent
works, and since such content reflects collective strategies
taking into account a particular person’s view on a concert,
it can be of interest for PHENICX too.

As for existing work,in [61] audio fingerprints are used to
synchronise multiple user-generated concert video record-
ings, and key moments within a concert are detected based
on the amount of overlap between multiple user clips. In [62],
an automated video mashup system is presented, synchro-
nising different user videos through camera flashes, and
generating an aesthetic mashup result based on formalised
requirements as elicited from video camera users. Finally,
in [63] a concert video browser is demonstrated based on
segment-level visual concept detectors, in which crowd-
sourcing mechanisms are used to improve the indexing re-
sults. It is striking that none of these existing methods ac-
tually base their analyses or evaluations on musical audio
content, nor do they try to relate obtained results to musical

content. In contrast, in PHENICX, since multi-perspective
video and social information are to be used to get a better
insight into the live musical performance, musical aspects
will need to be taken into account explicitly.
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