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ABSTRACT
This tutorial introduces multimedia recommender systems (MMRS),
in particular, recommender systems that leverage multimedia con-
tent to recommend different media types. In contrast to the still
most frequently adopted collaborative filtering approaches, we
focus on content-based MMRS and on hybrids of collaborative
filtering and content-based filtering. The target recommendation
domains of the tutorial are movies, music and images. We present
state-of-the-art approaches for multimedia feature extraction (text,
audio, visual), including deep learning methods, and recommenda-
tion approaches tailored to the multimedia domain. Furthermore,
by introducing common evaluation techniques, pointing to publicly
available datasets specific to the multimedia domain, and discussing
the grand challenges in MMRS research, this tutorial provides the
audience with a profound introduction to MMRS and an inspiration
to conduct further research.
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1 MOTIVATION AND BACKGROUND
Data available on the Web and by content providers nowadays en-
compass several different media types, including text, audio, video,
and images. The abundance of this kind of data is made accessible
by multimedia recommender systems (MMRS), in which either the
input features (item descriptors) or output items (recommendations)
are composed of several media types.

The majority of MMRS algorithms effect recommendations using
either content-based filtering (CBF) based on textual data such as
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metadata or collaborative filtering (CF) leveraging the correlations
among user interactions. However, the content of a multimedia
item can be described in more versatile ways. For a movie, these
include its genre, actors, and mise-en-scène reflected in its audio-
visual content. For a music piece, style, rhythm, instrumentation,
lyrics, but also cultural background of the performer are important
descriptors, among others. Still, metadata features are the most
commonly used in today’s recommender systems

In stark contrast, in the multimedia community, extracting con-
tent descriptors from different media types is a well-established
research area. So is the automatic inference of semantic descriptors
by means of machine and deep learning. This tutorial therefore
aims at bridging the gap between the multimedia, machine learning,
and recommender systems communities. We believe that recom-
mender systems research can strongly benefit from knowledge in
multimedia signal processing established over the past years for
solving various multimedia recommendation tasks.

2 TUTORIAL DESCRIPTION
We first introduce the notion of MMRS [8]. In particular, we present
the typical viewpoints of the multimedia and the recommender
systems communities and discuss how they can be connected for
mutual benefit. We further categorize MMRS in terms of the stage
in the recommendation process at which multimedia content can be
used (e.g., feature representation as input or as items to recommend).
Based on this categorization, we discuss which recommendation
algorithms can be applied for which scenario (e.g., CF-MMRS, CB-
MMRS, MM-driven RS [8]).

In the main part, we focus on the domains of movie and mu-
sic recommendation and partly as well image recommendation,
covering the following topics:

Multimedia feature extraction: We categorize multimedia features
into audio/music, image/video, text, and metadata, and present the
state of the art in feature extraction from each modality. We partic-
ularly discuss i-vectors [4, 9, 25] and block-level features [4, 15] for
audio/music, aesthetic features and AlexNet deep features [4, 19, 20]
for image/video, and features derived from lyrics and subtitles via
vector space models and topic modeling [3, 18, 21] for text.

MMRS approaches:We elaborate on the state-of-the-art approaches
that exploit the introduced multimedia features to build MMRS.
More precisely, we clarify that multimedia recommendation is not
only about recommending a particular media type. Rather, there
exists a variety of other tasks in which the analysis of multime-
dia input can be usefully exploited to provide recommendations
of various kinds. In particular, we categorize three main types of
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systems: (i) CB-MMRS, (ii) CF-MMRS, and (iii) MM-driven RS and
show how these systems differently incorporate MM content in the
recommendation process.

Feature extraction via deep learning: We provide examples for
automatic feature extraction by deep neural networks, discussing
convolutional and recurrent networks as well as architectures for
standalone feature extraction using these components. We further
discuss how to integrate any type of extracted latent content fea-
tures into latent feature based CF models to enable hybridization.

End-to-end deep models: One of the advantages of deep learning
is modularity, which allows for easy integration of multiple infor-
mation sources into a single, which can be trained by end-to-end
using gradient descent. In theory, these models completely elimi-
nate manual feature engineering, if enough data is available. We
examine this statement and also compare end-to-end training and
pretraining of features.

Evaluation and datasets: We discuss the particularities when eval-
uating MMRS (e.g., the need to consider sequential characteristics
in playlist recommendation or the strong contextual component
for outfit recommendation via fashion images) and point to a few
existing datasets that integrate multimedia descriptors and pref-
erence information, such as MMTF-14K1 for movies [4] and the
Million Song Dataset2 (and its extensions) for music [2].

In the last part, we discuss the grand challenges MMRS research
is facing, such as (i) the establishment of standardized and public
datasets that integrate rating data and multimedia content descrip-
tors [4], (ii) the need for transparent and fair recommendation
approaches based on multimedia descriptors, and (iii) sequence-
aware MMRS that consider users’ context and intent. By providing
some practical guidelines, we finally intend to help researchers
new to the area of MMRS shaping their ideas for future research
directions on this interesting topic.

3 INSTRUCTORS
Dr. Yashar Deldjoo completed his PhD at Politecnico di Mi-

lano, Italy. His research interests include recommender systems and
personalization, multimedia, and machine learning. Selected publi-
cations: [4–7, 10, 24, 26]

Dr.Markus Schedl is an Associate Professor at the Johannes Ke-
pler University Linz, Institute of Computational Perception. His re-
search interests include music recommender systems, data analytics,
and social media mining. Selected publications: [4, 5, 8, 15, 22, 23].

Dr. Balázs Hidasi is the Head of Research and Data Mining at
Gravity R&D. His main research areas are deep learning for recom-
mender systems, matrix and tensor factorization, session-based and
context-aware recommendations. Selected publications: [11–14, 16].

Dr. Peter Knees is an Assistant Professor of the Faculty of
Informatics of TU Wien. His research interests include music in-
formation retrieval and recommender systems in creative domains.
Selected publications: [1, 17, 18, 22].
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