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ABSTRACT

In our submission we use a set of block-level features for
three different tasks, namely genre classification, tag clas-
sification and music similarity estimation. This abstract
presents the feature set that is used and some specific de-
tails of the three submitted algorithms.

1. INTRODUCTION

In our system we extract the same set of block-level fea-
tures for all three tasks. The feature extraction is imple-
mented in MATLAB. All three algorithms also contain a
classification part, which is based on the WEKA machine
learning toolbox [5]. Thus, we first briefly introduce the
features set in section 2 and then in the subsequent sec-
tions we discuss the most important algorithmic details of
the submitted algorithms (genre classification, tag classifi-
cation and music similarity estimation).

2. BLOCK-LEVEL FEATURES

A detailed introduction to the block processing framework
can be found in [19-21]. Here we only present the specific
details of the extraction process for the individual block-
level features.

2.1 Audio Preprocessing

All block-level features presented here are based on the
same spectral representation: the cent-scaled magnitude
spectrum. To obtain this, the input signal is downsam-
pled to 22 kHz and transformed to the frequency domain
by applying a Short Time Fourier Transform (STFT) using
a window size of 2048 samples, a hop size of 512 samples
and a Hanning window. Then we compute the magnitude
spectrum | X (f)| thereof and account for the musical na-
ture of the audio signals by mapping the magnitude spec-
trum with linear frequency resolution onto the logarithmic
Cent scale [4] given by Equation (1).
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The compressed magnitude spectrum X (k) is then trans-
formed according to Eq.2 to obtain a logarithmic scale.
Altogether, the mapping onto the Cent scale is a fast ap-
proximation of a constant-Q transform, but with constant
window size for all frequency bins.

X(k)ap = 20log,(X (k)) 2

Finally, to make the obtained spectrum intensity-invariant,
we normalize it by removing the mean computed over a
sliding window from each audio frame as described in [19].
All features presented in the next section are based on the
normalized cent spectrum. Note that the reported parame-
ter settings for the audio features in the following subsec-
tions were obtained via optimization with respect to a set
of genre classification experiments.

2.2 Spectral Pattern (SP)

To characterize the frequency or timbral content of each
song we take short blocks of the cent spectrum containing
10 frames. A hop size of 5 frames is used. Then we simply
sort each frequency band of the block.
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As summarization function the 0.9 percentile is used.

2.3 Delta Spectral Pattern (DSP)

The Delta Spectral Pattern is extracted by computing the
difference between the original cent spectrum and a copy
of the spectrum delayed by 3 frames, to emphasize onsets.
The resulting delta spectrum is rectified so that only pos-
itive values are kept. Then we proceed exactly as for the
Spectral Pattern and sort each frequency band of a block.
A block size of 25 frames and a hop size of 5 frames are
used, and the 0.9 percentile serves as summarization func-
tion. It is important to note that the DSP’s block size dif-
fers from the block size of the SP; both were obtained via
optimization. Consequently, the SP and the DSP capture
information over different time spans.

2.4 Variance Delta Spectral Pattern (VDSP)

The feature extraction process of the Variance Delta Spec-
tral Pattern is the same as for the Delta Spectral Pattern
(DSP). The only difference is that the Variance is used as



summarization function over the individual feature dimen-
sions. While the Delta Spectral Pattern (DSP) tries to cap-
ture the strength of onsets, the VDSP should indicate if
the strength of the onsets varies over time or, to be more
precise, over the individual blocks. A hop size of 5 and a
block size of 25 frames are used.

2.5 Logarithmic Fluctuation Pattern (LFP)

To represent the rhythmic structure of a song we extract
the Logarithmic Fluctuation Patterns, a modified version of
the Fluctuation Pattern proposed by Pampalk et al. [14]. A
block size of 512 and a hop size of 128 are used. We take
the FFT for each frequency band of the block to extract
the periodicities in each band. We only keep the ampli-
tude modulations up to 600 bpm. The amplitude modula-
tion coefficients are weighted based on the psychoacoustic
model of the fluctuation strength according to the original
approach in [14]. To represent the extracted rhythm pat-
tern in a more tempo invariant way, we then follow the idea
in [7,8, 18] and represent periodicity in log scale instead of
linear scale. Finally, we blur the resulting pattern with a
Gaussian filter, but for the frequency dimension only. The
summarization function is the 0.6 percentile.

2.6 Correlation Pattern (CP)

To extract the Correlation Pattern the frequency resolution
is first reduced to 52 bands. This was found to be use-
ful by optimization and also reduces the dimensionality of
the resulting pattern. Then we compute the pairwise lin-
ear correlation coefficient (Pearson Correlation) between
each pair of frequency bands, which gives a symmetric
correlation matrix. The basic idea of using band inter-
correlation as a frame-level audio descriptor has already
been proposed by Aylon [1]. Within the block-processing
framework the correlation matrix is computed on block-
level, which is computationally efficient, and a song-level
descriptor is derived via using the 0.5 percentile as summa-
rization function. The Correlation Pattern can capture, for
example, harmonic relations of frequency bands when sus-
tained musical tones are present. Also rhythmic relations
can be reflected by the CP. For example, if a bass drum is
always hit simultaneously with a high-hat this would re-
sult in a strong positive correlation between low and high
frequency bands. Visualizations of the CP show interest-
ing patterns for different types of songs. For example the
presence of a singing voice leads to very specific correla-
tion patterns, which is even more obvious for the CP com-
puted from time-frequency representations with higher fre-
quency resolutions. A block size of 256 frames and a hop
size of 128 frames is used.

2.7 Spectral Contrast Pattern (SCP)

The Spectral Contrast [9] is a feature that roughly esti-
mates the “fone-ness” of a spectral frame. This is real-
ized by computing the difference between spectral peaks
and valleys in several sub-bands. As strong spectral peaks
roughly correspond to tonal components and flat spectral
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Figure 1. Visualization of the proposed block-level pat-
terns for a Hip-Hop song (upper) and a Jazz song (lower).

excerpts are often related to noise-like or percussive ele-
ments, the difference between peaks and valleys character-
izes the toneness in each sub-band. In our implementation
the Spectral Contrast is computed from a cent scaled spec-
trum subdivided into 20 frequency bands. For each audio
frame, we compute in each band the difference between the
maximum value and the minimum value of the frequency
bins within the band. This results in 20 Spectral Contrast
values per frame. The values pertaining to an entire block
are then sorted within each frequency band, as already de-
scribed for the SP above. A block size of 40 frames and a
hop size of 20 frames are used. The summarization func-
tion is the 0.1 percentile.

Figure 1 visualizes the proposed set of features for two
different songs, a Hip-Hop and a Jazz song. It is worth
mentioning that beside the introduced block-level features
the Onset Patterns, another variant of the fluctuation pat-
terns proposed by Pohle et al. [18], are used for music sim-
ilarity estimation.

3. GENRE CLASSIFICATION

The genre classification approach itself is rather straight
forward. The presented block-level features are combined
into a single feature vector that is then used for classifica-
tion. As classification approach the WEKA support vector
machine classifier (SMO) is used. Comparing the results
to our MIREX 2009 submission we obtain improved clas-
sification results on some well-known datasets (see table
1). The additional block-level features improve the classi-
fication accuracy.

4. AUTOMATIC TAG PREDICTION

In general tag prediction can be viewed as a simple ex-
tension of the genre classification approach from single



Reference \ Dataset Accuracy
Tazanetakis et al. [23] GTZAN 61.00%
Holzapfel et al. [6] GTZAN 74.00%
Lidy et al. [12] GTZAN 76.80%
Seyerlehner et al. [19] GTZAN 77.96%
Panagakis et al. [15] GTZAN 78.20%
Li. etal. [11] GTZAN 78.50%
Bergstra et. al. [2] GTZAN 83.00%
MIREX 2010 Submission GTZAN 85.49%
Panagakis et al. [16] GTZAN 92.40 %
Panagakis et al. [15] ISMIR2004all 80.95%
Lidy et al. [12] ISMIR2004all 81.40%
Seyerlehner et al. [19] ISMIR2004all 83.72%
MIREX 2010 Submission | ISMIR2004all 88.27%
Pohle et al. [18] ISMIR2004all | 90.04%
Panagakis et al. [16] ISMIR2004all | 94.38 %
Holzapfel et al. [7] Ballroom 86.90%
Jensen et al. [8] Ballroom 89.00%
Pohle et al. [18] Ballroom 89.20%
MIREX 2010 Submission Ballroom 92.44%

Table 1. Comparison of classification accuracies achieved
by music genre classification approaches.

to multi-label classification. In tag classification there is,
instead of a single classifier like in genre classification,
one classifier per tag. Unfortunately, we cannot directly
use the block-level features as presented in section 2 for
tag classification because of the high dimensionality (9448
dimensions) of the feature space. Directly using the fea-
tures block-level features would not be computationally
tractable and most likely break the allowed MIREX run-
time limit for tag classification algorithms. To solve this
issues the dimensionality of each block-level feature is re-
duced using the Principal Component Analysis (PCA) as
proposed in [21]. The number of principal components
(N) used to represent each block-level feature is deter-
mined by the cumulative variance that they capture. In our
implementation N is chosen such that at least 80% of the
total variance is captured. It is important to note that in
our submission we do not use cross validation to estimate
the optimal percentage of the total variance, but we have
rather set this parameter according to other dataset of ap-
proximately the same size.

While in [21] our tag classification approach was based
on the MARSYAS framework, in our submission we de-
cided to use WEKA instead to be platform independent.
An important parameter that has an influence on the eval-
uation metrics is the binarization threshold. To generate
binary predictions based on the probabilistic output of a
tag classifier, typically a binarization threshold ¢ = 0.5 is
chosen. However, the threshold can also be set lower or
higher to trade between precision and recall. To maximize
the average f-Score ¢ = 0.25 was chosen based on a set of
tag classification experiments (see figure 2). We do not use
the adaptive binarization threshold as proposed in [13], be-

cause using this approach no predictions/classification can
be made for individual tracks, but only for sets of music
pieces. Furthermore, it is important to note that we do not
use stacked classification [13] in our submission as dur-
ing our experimentation with tag classification we found
that in some cases the stacked generalization classification
approach can also have a negative influence on the classi-
fication result.

5. MUSIC SIMILARITY ESTIMATION

Our music similarity estimation approach is based on two
distinct components: Block-Level Feature Similarity and
Tag Affinity Based Similarity. The following two subsec-
tions present the algorithmic details of these two compo-
nents.

5.1 Block-Level Feature Similarity

To directly estimate music similarity based on the presented
block-level features we follow the approach presented in
[20]. First, pairwise song similarities are estimated by
computing the Manhattan distance for each of the presented
block-level features separately. Then in a second step the
individual distance matrices resulting from the individual
patterns are combined into a single distance matrix. The
main problem when several components are combined into
a single similarity estimate is that the individual compo-
nents potentially measure distances on different scales. To
account for this, we follow the approach in [17] and per-
form a distance space normalization (DSN). However, we
use a modified variant that allows for a more intuitive inter-
pretation. Each distance of a distance matrix D,, ,,, is nor-
malized by subtracting the mean and dividing by the stan-
dard deviation (Gaussian normalization) over all distances
in row n and column m (see figure 3). Thus, each distance
between two songs n and m has its own normalization pa-
rameters, as all distances to song m and all distances to
song n are used for normalization. This way the normal-
ization operation can also change the ordering within a col-
umn / row, which can even have a positive influences on the
nearest neighbor classification accuracy according to [18].
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Figure 3. Distance Space Normalization of a distance ma-
trix.
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Figure 2. Evaluation of different binarization thresholds for per tag averaged (avg) and global (g) evaluation metrics.

After the distances resulting from the individual com-
ponents have been normalized they are summed to yield
an overall similarity measure. It is worth mentioning that
we have evaluated several other normalization approaches
to combine the individual components, but none outper-
formed the DSN approach described here.

5.1.1 Extended Distance Space Normalization (EDSN)

It is straightforward to extend this additive combination ap-
proach by assigning individual weights to each component.
Additionally, based on the observation that the DSN ap-
proach all alone can help to improve nearest neighbor clas-
sification accuracy, we extend the combination approach
and once more normalize the resulting distance matrix af-
ter the individually weighted components have been com-
bined. This results in an improvement of the classification
accuracy. The overall combination method we propose is
visualized in Figure 4. The only difference to the approach
presented in [20] is that an additional pattern, the Onset
Pattern [18], is used. The weights used for the combina-
tion are the same as reported in [20]. For the additionally
added Onset Patterns a weight of 1 is used.

5.2 Tag Affinity Based Similarity

To compute tag affinity based similarity we use the output
of a set of pre-trained support vector machine classifiers
with probabilistic outputs as proposed in [3, 24]. These
classifiers were trained on well-known datasets. Seven dif-
ferent genre classification datasets were used to learn genre
affinities. For each genre classification dataset we obtain
on classifier that is used to estimate one genre affinity vec-
tor per dataset. The CAL500 [22] and the Magnatagatune
[10] dataset are used to train two different sets of tag pre-
dictors. Optimal PCA compression parameters for both
datasets were chosen according to our experiments in [21].
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Figure 4. Schematic structure of the combination ap-
proach.

For each tag of the these classification datasets we obtain
one classifier that is used to predict the probability of a tag
for a specific song. Altogether, 371 pre-trained classifiers
are used to estimate such predefined labels in our approach.

To come up with similarity estimates we compute the
Manhattan distances between two songs’ tag or genre affin-
ity vectors separately for each dataset. Then the individ-
ual distances resulting from the different datasets are com-
bined into a single distance matrix according to the ex-
tended distance space normalization approach (see 5.1.1).

Finally, to generate the overall similarity matrix the ma-
trices of both components (Block-Level Similarity and Tag
Affinity Based Similarity) are simply added to combine
them.
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