Training General-Purpose Audio Tagging Networks with Noisy Labels and Iterative Self-Verification

DCASE-2018 Challenge Task 2

Matthias Dorfer and Gerhard Widmer

Institute of Computational Perception
Audio Signal Pre-Processing

- Normalize to a dB-level of -0.1
- Clip silence in beginning and end of signal
- Re-sampled to 32 kHz
Audio Signal Pre-Processing

- Normalize to a dB-level of -0.1
- Clip silence in beginning and end of signal
- re-sampled to 32 kHz

Clipping is important for how we will train our models.
Spectrogram Parameters

Two spectrogram types to capture different aspects of the audio

Version – 1
- STFT hop-size: 192
- 1024-sample hann windows
- Perceptual weighting
- Mel-scaled filterbank (128 bins)

Version – 2
- STFT hop-size: 128
- 1024-sample hann windows
- Logarithm of the power spectrogram
- Log-scaled filterbank (128 bins)
Spectrogram Length Distribution

- Unequal length distribution
- Few long examples
- Many short examples
Spectrogram Length Distribution

Unequal length distribution
- Few long examples
- Many short examples

Not nice when working with Convolution Neural Networks
Dealing with Spectrogram Lengths

Fix length to 3000 frames

- Repeat a given excerpt in case it is too short
- Clip at 3000 frames in case it is too long
Dealing with Spectrogram Lengths

Fix length to 3000 frames

- Repeat a given excerpt in case it is too short
- Clip at 3000 frames in case it is too long

Mainly for technical reasons. (Network architecture, Memory)
Network Architecture

- Fully Convolutional Neural Network
 - VGG-Style (3 x 3 convolutions & 2 x 2 max-pooling)
 - Global Average Pooling over 41 feature maps
- Why?
 - Less parameters in classification layer
 - Deals with varying spectrogram length
 (Nice to have for application time)
Training Procedure

- ADAM: 500 epochs with initial learning rate 0.001
- Linear learning rate decay starting from epoch 100
Training Procedure

- ADAM: 500 epochs with initial learning rate 0.001
- Linear learning rate decay starting from epoch 100
- Spectrogram Excerpt Sub-Sampling (384 frame excerpts)
Training Procedure

- ADAM: 500 epochs with initial learning rate 0.001
- Linear learning rate decay starting from epoch 100
- Spectrogram Excerpt Sub-Sampling (384 frame excerpts)
- Mixup Data Augmentation (α=0.3)

\[
\alpha X_1 + \alpha y_1 + (1 - \alpha) X_2 + (1 - \alpha) y_2
\]
4-Fold Iterative Self-Verification

- Address the noisy labels in the development dataset.
- **Central Idea:** Gradually shift unverified labels into the verified, trusted training set for fine-tuning the models.

Is this really class Knock?
4-Fold Cross-Validation Setup

- Crucial component for self-verification
- Parts of the data (to be verified) must not be presented to the verification network for training
- Prediction would be worthless
- Stratified sub-folds! (keep label distribution)
4-Fold Cross-Validation Setup

- Crucial component for self-verification
- Parts of the data (to be verified) must not be presented to the verification network for training

"The test set is composed of ~1.6k samples with manually-verified annotations and with a similar category distribution than that of the train set."
Iterative Self-Verification Loop

Train model on verified and unverified training data
Iterative Self-Verification Loop

Train model on verified and unverified training data

Predict on “unseen”, unverified validation data

Verification Network

Predict posterior on K random excerpts

Verification Example
Iterative Self-Verification Loop

Train model on verified and unverified training data

Predict on "unseen", unverified validation data

Self-verify labels

Verification Conditions

1) Automatic annotation and avg. prediction agree ($y = y_p$)

2) Average target class posteriors exceed 0.95

3) Count of 40 self-verified examples per class is not reached

Manually Verified Automatically Verified Unverified
Iterative Self-Verification Loop

- Train model on verified and unverified training data
- Predict on "unseen", unverified validation data
- Self-verify labels
- Finetune model with verified and self-verified labels

Initial model: 93.87
Iteration 7: 96.01
Experimental Setup

- We evaluate the model of the iteration with highest verified validation set score.
- Test set comprises 1600 unseen audio clips
- Evaluation Measures
 - Mean Average Precison (MAP@3)
 - F-Score for Individual Classes
Experimental Results

MAP@3

Public 0.9563
Private 0.9518
Experimental Results

MAP@3

Public 0.9563
Private 0.9518

Worst classes:
Fireworks, Gunshot, Squeak, Scissors, Glockenspiel, Chime
Experimental Results

MAP@3

<table>
<thead>
<tr>
<th></th>
<th>Public</th>
<th>Private</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.9563</td>
<td>0.9518</td>
</tr>
</tbody>
</table>

Private Kaggle Leaderboard

2nd place

Team ID (561 participants)
Live Machine Listening Demo on unseen sounds ...
Summary and Conclusions

- **Proposed Approach:**
 - Iterative Self-verification Loop
 - Fully Convolutional Neural Network (VGG, Global Average Pooling, 2nd place Task 1A)

- Improvement from **93.87% to 96.01%** (nice but we can't expect miracles)

- Reminder for how important **the right ML setup** is

- Audio (Signal) **Pre-Processing** is still key

- https://cpjku.github.io/dcase_task2/