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This Talk Is About ...

Multi-Modal Neural Networks

Audio-Visual
Representation Learning

Learning Correspondences
between Audio and Sheet-Music

Task ...

Modality 1 Modality 1
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OUR TASKS



Our Tasks

Score Following (Localization) Cross-Modality Retrieval

Embedding Layer

Ranking Loss

View 1 View 2
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Task - Score Following

Score Following is the process of following a
musical performance (audio) with respect to

a known symbolical representation (e.g. a score).
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The Task: Audio to Sheet Matching
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The Task: Audio to Sheet Matching

Simultaneously learn (in end-to-end neural network fashion) to

� read notes from images (pixels)

� listen to music

� match played music to its corresponding notes
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METHODS



Spectrogram to Sheet Correspondences

� Rightmost onset is target note onset

� Temporal context of 1.2 sec into the past
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Multi-modal Convolution Network

The output layer is a B-way soft-max!
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Soft Target Vectors

� Staff image is quantized into buckets

� Each bucket is represented by one output neuron

� Buckets hold probability of containing the note

� Neighbouring buckets share probability→ soft targets

� Used as target values for training our networks

9/39



Soft Target Vectors

� Staff image is quantized into buckets

� Each bucket is represented by one output neuron

� Buckets hold probability of containing the note

� Neighbouring buckets share probability→ soft targets

� Used as target values for training our networks

9/39



Optimization Objective

Output activation: B-way soft-max

φ(yj,b) = e
yj,b∑B

k=1 e
yj,k

Soft targets tj

Loss: Categorical Cross Entropy

lj(Θ) = −
∑B

k=1 tj,k log(pj,k)
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Discussion: Choice of Objective

� Allows to model uncertainties
(e.g. repetitive structures in music)

� Our experience: Much nicer to optimize than
MSE regression or Mixture Density Networks
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Sheet Location Prediction

At test time: Predict expected location x̂j of audio snippet with
target note j in sheet image.

Probability weighted localization
x̂j =

∑
k∈{b∗−1,b∗,b∗+1}wkck

� bucket b∗ with highest probability pj

� weights w = {pj,b∗−1, pj,b∗ , pj,b∗+1},
� bucket coordinates ck
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EXPERIMENTS / DEMO



Train / Evaluation Data

Matthias Dorfer, Andreas Arzt, and Gerhard Widmer.
"Towards Score Following in Sheet Music Images."
In Proc. of 17th International Society for Music Information Retrieval Conference, 2016.

� Trained on monophonic piano music

� Localization of staff lines

� Synthesize midi-tracks to audio
� Signal processing

� Spectrogram (22.05 kHz, 2048 window, 31.25 fps)
� Filterbank: 24 band logarithmic (80 Hz to 8 kHz)
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Model Architecture and Optimization

Sheet-Image 40× 390 Spectrogram 136× 40

VGG style image model VGG style audio model
3× 3 Conv, BN, ReLU 3× 3 Conv, BN, ReLU

Max pooling Max pooling
Dense, BN, ReLu, Drop-Out Dense, BN, ReLu, Drop-Out

Multi-modality merging
Concatenation-Layer

Dense, BN, ReLu, Drop-Out
Dense, BN, ReLu, Drop-Out
B-way Soft-Max Layer

� Mini-batch stochastic gradient descent with momentum
� Mini-batch size: 100

� Learning rate: 0.1 (divided by 10 every 10 epochs)
� Momentum: 0.9

� Weight decay: 0.0001
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Demo with Real Music

Minuet in G Major (BWV Anhang 114, Johann Sebastian Bach)

� Played on Yamaha AvantGrand N2 hybrid piano
� Recorded using a single microphone
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Demo with Real Music
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So far so good ...

Model works well on monophonic music
and seems to learn reasonable representations.

Important observation: No temporal model required!

What to do next?
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Switch to "Real Music"
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Composers, Sheet Music and Audio

� Pieces from MuseScore (annotating becomes feasible)

� Classical Piano Music by Mozart (14 pieces), Bach (16),
Beethoven (5), Haydn (4) and Chopin (1)

� Experimental Setup:
train / validate: Mozart | test: all composers

� Audio is synthesized
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ANNOTATION PIPELINE



Fully Convolutional Segmentation Networks

Optical Music Recognition
(OMR) Pipeline

1. Input Image

2. System Probability Maps

3. Systems Recognition

4. Regions of Interest

5. Note Probability Maps

6. Note Head Recognition
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Annotation Pipeline

2. Annotation of individual note heads 

3. Relate note heads
    and onsets

Image of Sheet Music

1. Detect systems
by bounding box

Now we know

� the locations of staff systems and note heads and
for each note head its onset time in the audio.

� overall 63836 annotated correspondences of 51 pieces.
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Train Data Preparation

We unroll the score and have the relations to the audio

This is all we need to train our models!
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Demo

W.A. Mozart
Piano Sonata K545, 1st Movement

Plain, Frame-wise
Multi-Modal Convolution Network
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Observations

� Sometimes a bit shaky

� Score following fails at the beginning of second page!

But why?
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Failure
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NET DEBUGGING



Guided Back-Propagation

Springenberg et al., "Striving for Simplicity - The All Convolutional Net", 2016.

Saliency Maps for understanding trained models

Given a trained network f and a fixed input X we compute the
gradient of network prediction f(X) ∈ Rk with respect to its input

∂ max(f(X))

∂X
(1)

Determines those parts of the input having the highest effect on the
prediction when changed.

Guided back-propagation with rectified linear units only back-
propagates positive error signals δl−1 = δl 1x>0 1δl>0
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Net Debugging
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Net Debugging
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Failure Analysis Continued

� Network pays attention to
note heads but does not
seem to be pitch sensitive

� However, exploiting temporal
relations inherent in music
could fix the problem!
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RECURRENT NEURAL
NETWORKS!



RNN Training Examples
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RNN Training Examples
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RNN Learning Curves
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HIDDEN MARKOV MODELS
(HMMS)



Hidden Markov Models

Enforce spatial and temporal structure into
single-time-step prediction score-following-model.
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HMM - Design
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HMM - Design

States
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HMM - Design

0.75

0.25
States

Observations
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HMM - Design

0.75

0.25

Map Local Predictions
to Global Sheet Image

and
use them as Observations

States

Observations
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HMM - Design

0.75

0.25
States

Observations

Apply HMM Filtering / Tracking Algorithm
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HMM - Demo

W.A. Mozart
Piano Sonata K545, 1st Movement

HMM-Tracker
Multi-Modal Convolution Network
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CONCLUSIONS



Conclusions

Learning multi-modal representations in the context of
music-audio and sheet-music is a challenging application.

Multi-Modal Convolution Networks are the right direction.

However there are many open problems left:

� Learning Temporal Relations from training data

� Real audio and real performances, (asynchronous onsets,
pedal, and varying dynamics)

� More training data!

� ...

34/39



Conclusions

Learning multi-modal representations in the context of
music-audio and sheet-music is a challenging application.

Multi-Modal Convolution Networks are the right direction.

However there are many open problems left:

� Learning Temporal Relations from training data

� Real audio and real performances, (asynchronous onsets,
pedal, and varying dynamics)

� More training data!

� ...

34/39



Conclusions

Learning multi-modal representations in the context of
music-audio and sheet-music is a challenging application.

Multi-Modal Convolution Networks are the right direction.

However there are many open problems left:

� Learning Temporal Relations from training data

� Real audio and real performances, (asynchronous onsets,
pedal, and varying dynamics)

� More training data!

� ...

34/39



Data Augmentation

Image augmentation:

200 pxl

1
8

0
 p

x
l

spectrogram

Audio augmentation
Different tempi and sound founts
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AUDIO - SHEET MUSIC
CROSS-MODALITY
RETRIEVAL



The Task

Our Goal : Find a common vector representation of both
audio and sheet music (low dimensional embedding)

Why would we like this: to make them comparable.
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Cross-Modality Retrieval Neural Network

Embedding Layer

Ranking Loss

View 1 View 2

Optimizes the similarity (in embedding space) between
corresponding audio and sheet image snippets
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Model Details and Optimization

Embedding Layer

Ranking Loss

View 1 View 2

� Uses CCA Embedding Layer

� Trained with Pairwise
Ranking Loss

� 32-dimensional embedding

Encourage an embedding space where
the distance between matching samples is lower than the

distance between mismatching samples.
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Cross-Modality Retrieval

Cross-modality retrieval
by cosine distance

AudioSheet

query

result

Audio query point of view:

� blue dots: embedded candidate sheet music snippets

� red dot: embedding of an audio query.

→ Retrieval by nearest neighbor search
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