Query Performance Prediction for Microblog Search

A Preliminary Study

Maram Hasanain, Rana Malhas, Tamer Elsayed

11 July 2014

SoMeRA’14 Workshop in conjunction with SIGIR’14
Why?

Expectation
High quality results

Reality
Some queries are difficult

Poor results
What’s QPP?

Query

Retrieval model

Result list (R)

sigir awards

Query Performance Prediction (QPP)

estimated performance
QPP in Microblog Search?

- QPP is not a new problem

RQ1: How well the existing state-of-the-art predictors perform in the context of microblog search?

- Microblog search is *different*

RQ2: Will the predictors' performance be consistent across different retrieval models, specifically *temporal ones*?
Setup of the Study ...
Overview

• Examine *frequently-used* predictors for *tweets search*

• 2 types of *predictors*:
 o *Content-based*: consider terms in tweets and queries
 o *Temporal*: also consider time factor

• 2 types of *retrieval models*:
 o *Content-based*
 e.g. Query Likelihood
 o *Temporal*
 e.g. Time-based Exponential Priors
QP Predictors

Content-based predictors

• Standard deviation (σ)
 o Normalized Standard Deviation (NSD)
 o Normalized Query Commitment (NQC)

• KL-divergence
 o Clarity (CLR)

• Information Gain
 o Weighted information gain (WIG)
QP Predictors

• Inverse document frequency (IDF)
 $\text{SumIDF}, \text{MaxIDF}, \text{AvgIDF}, \ldots$

• Collection-query similarity (SCQ)
 $\text{SumSCQ}, \text{MaxSCQ}, \text{AvgSCQ}, \ldots$

• Simplified clarity score (SCS)
QP Predictors

Temporal predictor

• KL-divergence
 Temporal Clarity (t-CLR)

Post-retrieval
Retrieval Models

Content-based

• Query Likelihood (QL)

\[P(D|Q) \propto P(Q|D) \cdot P(D) \]

Temporal

• QL with temporal prior (t-EXP)

\[P(D|Q) \propto P(Q|D) \cdot r \cdot e^{-r \cdot t_d} \]

• Temporal relevance modeling (t-QRM)

\[P(w|Q) = \sum_{t \in T} P(w|t, Q)P(t|Q) \]

\[P(w|t, Q) = \sum_{D \in t} P(w|D)P(D|t, Q) \]
Evaluation
Setup

Datasets

<table>
<thead>
<tr>
<th>Source</th>
<th>Tweets2011</th>
<th>Tweets2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREC’11-12</td>
<td>~16M</td>
<td>~243M</td>
</tr>
<tr>
<td>Tweets</td>
<td>108</td>
<td>60</td>
</tr>
<tr>
<td>Queries</td>
<td>~2 weeks</td>
<td>~2 months</td>
</tr>
</tbody>
</table>

Evaluating retrieval

Evaluation measure: Average precision (AP)
Setup

Evaluating prediction

• **Correlation** between *predicted AP* & *actual AP*.

• Linear correlation: **Pearson’s r**

• Rank correlation: **Kendall’s τ**

Training/Testing

• 75% of queries for parameter tuning

• Repeat and average with 120 trials
Results (Tweets2011)

- **t-CLR is best**
- **NQC: Increase in performance**
- **Not significant**
- **SumIdf: Comparable quality**
- **CLR: Decline in quality**
- **WIG: Decline in quality**

Pearson’s correlation

Retrieval model

- QL
- t-EXP
- t-QRM
Results (Tweets2013)

- CLR is best when using Pearson's correlation.
- NQC: Increase in performance
- t-CLR has good performance
- Not significant
Combining Predictors

• Using linear regression
• Feature selection to find best predictors combination
• Only over Tweet2011
• 40% of queries for parameter tuning
• Train & test combined model by cross-validation with 60% of queries.
Combining Predictors (Tweets2011)

- QL: Pearson's correlation
 - Combined: 0.42
 - Best: 0.21

- t-EXP: Pearson's correlation
 - Combined: 0.56
 - Best: 0.27

- t-QRM: Pearson's correlation
 - Combined: 0.60
 - Best: 0.46

- t-CLR in best combinations: 21.6%
- Pre-retrieval predictors in best combinations:
 - Combined: 46.5%

Predictors:
- t-CLR, CLR, WIG, SCS
- t-CLR, WIG, SCS
- t-CLR, NQC, NSD, SumIDF
Summary

• First comprehensive study focusing on testing QPP in microblog search with different retrieval models.

• Temporal predictors might be more suitable for microblog search.

• Combining predictors improved prediction quality.

• Some pre-retrieval predictors are showing promising results.
Future Work

• *Experiment* with more *temporal predictors & retrieval models*

• *Develop* new...
 o *Temporal* predictors
 o Predictors considering *tweet-specific* features

• *Use* QPP in ...
 o *Selective* query expansion
 o *Dynamic* query expansion
Thank You 😊